Triply periodic minimal surfaces for thermo-mechanical protection

被引:1
|
作者
Cheung, Samantha [1 ]
Kang, Jiyun [1 ]
Lin, Yujui [1 ]
Goodson, Kenneth E. [1 ]
Asheghi, Mehdi [1 ]
Gu, X. Wendy [1 ]
机构
[1] Stanford Univ, Mech Engn, Stanford, CA 94305 USA
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
美国国家科学基金会;
关键词
Triply periodic minimal surface; Composite; Pressure drop; Thermal conductivity; Battery thermal management systems; COMPOSITES; STATE; FOAMS;
D O I
10.1038/s41598-025-85935-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Triply periodic minimal surface (TPMS) metamaterials show promise for thermal management systems but are challenging to integrate into existing packaging with strict mechanical requirements. Composite TPMS lattices may offer more control over thermal and mechanical properties through material and geometric tuning. Here, we fabricate copper-plated, 3D-printed triply periodic minimal surface primitive lattices and evaluate their suitability for battery thermal management systems. We measure the effects of lattice geometry and copper thickness on pressure drop, mechanical properties, and thermal conductivity. The lattices as internal filling structures in a multichannel cold plate exhibited pressure drops under 6.5 kPa at a 1 LPM flow rate. Pressure drop decreased when the number of channels (width of the cold plate) was increased. With a 0.43% copper volume loading, the lattice more than tripled in thermal conductivity but still retained a polymer-like compliance. A higher lattice relative density did not affect the thermal conductivity but caused a higher elastic modulus and compressive strength, and a stiffer cyclic loading response. The lattice design demonstrates that the structural parameters that control pressure drop, mechanical, and thermal conductivity can be decoupled, which can be used to achieve a wide range of disparate properties in complex multiphysics systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On limits of triply periodic minimal surfaces
    Norio Ejiri
    Shoichi Fujimori
    Toshihiro Shoda
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1739 - 1748
  • [2] On the genus of triply periodic minimal surfaces
    Traizet, Martin
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2008, 79 (02) : 243 - 275
  • [3] On triply periodic minimal balance surfaces
    Molnár, E
    STRUCTURAL CHEMISTRY, 2002, 13 (3-4) : 267 - 275
  • [4] On Triply Periodic Minimal Balance Surfaces
    Emil Molnár
    Structural Chemistry, 2002, 13 : 267 - 275
  • [5] Construction of triply periodic minimal surfaces
    Karcher, H
    Polthier, K
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1715): : 2077 - 2104
  • [6] On limits of triply periodic minimal surfaces
    Ejiri, Norio
    Fujimori, Shoichi
    Shoda, Toshihiro
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1739 - 1748
  • [7] Stability of triply periodic minimal surfaces
    Ejiri, Norio
    Shoda, Toshihiro
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 67
  • [8] Mechanical performance analysis of functionally graded triply periodic minimal surfaces
    Shi, Yaochen
    Duan, Haitao
    Chang, Enquan
    Lu, Zhiyi
    Du, Yingyu
    AIP ADVANCES, 2024, 14 (08)
  • [9] TRIPLY PERIODIC MINIMAL BALANCE SURFACES - A CORRECTION
    KOCH, E
    FISCHER, W
    ACTA CRYSTALLOGRAPHICA SECTION A, 1993, 49 : 209 - 210
  • [10] Continuous transitions of triply periodic minimal surfaces
    Tian, Lihao
    Sun, Bingteng
    Yan, Xin
    Sharf, Andrei
    Tu, Changhe
    Lu, Lin
    ADDITIVE MANUFACTURING, 2024, 84