Asymptotic Behaviors at Infinity of Ancient Solutions to the Parabolic Monge-Ampère Equation

被引:0
作者
Yan, Kui [1 ]
Bao, Jiguang [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic Monge-Amp & egrave; re equation; Asymptotic behavior; Convergence rate; MAXIMUM PRINCIPLE; THEOREM; CALABI; EXTENSION; JORGENS;
D O I
10.1007/s12220-025-01992-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims at providing asymptotic behaviors at infinity of solutions to the parabolic Monge-Amp & egrave;re equations -u(t)detD(x)(2)u = f in R_(n+1) for n >= 1, where -u(t) has a positive upper and lower bound and f tends to 1 at infinity. We obtain results that are quite different from the elliptic case, and also improve the existing works of the parabolic case. There are counterexamples to illustrate that the asymptotic behavior is optimal.
引用
收藏
页数:30
相关论文
共 32 条
  • [1] ARONSZAJN N., 1961, Ann. Inst. Fourier(Grenoble), V11, P385, DOI 10.5802/aif.116
  • [2] Monge-Ampere equation on exterior domains
    Bao, Jiguang
    Li, Haigang
    Zhang, Lei
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) : 39 - 63
  • [3] An extension to a theorem of Jorgens, Calabi, and Pogorelov
    Caffarelli, L
    Li, YY
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (05) : 549 - 583
  • [4] Caffarelli L. A., 1995, Topics in PDEs: The Monge-Ampre equation.
  • [5] Calabi Cb E., 1958, Michigan Math. J., V5, P105, DOI 10.1307/mmj/1028998055
  • [6] COMPLETE AFFINE HYPERSURFACES .1. THE COMPLETENESS OF AFFINE METRICS
    CHENG, SY
    YAU, ST
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (06) : 839 - 866
  • [7] de Guzmn M., 1975, . Lecture Notes in Mathematics, P481, DOI 10.1007/BFb0081986
  • [8] An extension of a theorem by K.!Jorgens and a maximum principle at infinity for parabolic affine spheres
    Ferrer, L
    Martínez, A
    Milán, F
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1999, 230 (03) : 471 - 486
  • [9] Figalli A, 2017, ZUR LECT ADV MATH, P1, DOI 10.4171/170
  • [10] Friedman A., 1964, Partial Differential Equations of Parabolic Type