Developing a DNA Methylation Signature to Differentiate High-Grade Serous Ovarian Carcinomas from Benign Ovarian Tumors

被引:1
作者
Oliveira, Douglas V. N. P. [1 ]
Biskup, Edyta [1 ]
O'Rourke, Colm J. [2 ]
Hentze, Julie L. [1 ]
Andersen, Jesper B. [2 ]
Hogdall, Claus [3 ]
Hogdall, Estrid V. [1 ]
机构
[1] Univ Copenhagen, Herlev Hosp, Dept Pathol, Herlev, Denmark
[2] Univ Copenhagen, Biotech Res & Innovat Ctr, Dept Hlth & Med Sci, Copenhagen, Denmark
[3] Univ Copenhagen, Juliane Marie Ctr, Dept Gynecol, Rigshosp, Copenhagen, Denmark
关键词
PROMOTER HYPERMETHYLATION; CANCER; RISK; EPIGENOMICS; LANDSCAPE; PATTERNS; PACKAGE; MARKERS; SERUM;
D O I
10.1007/s40291-024-00740-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
IntroductionEpithelial ovarian cancer (EOC) represents a significant health challenge, with high-grade serous ovarian cancer (HGSOC) being the most common subtype. Early detection is hindered by nonspecific symptoms, leading to late-stage diagnoses and poor survival rates. Biomarkers are crucial for early diagnosis and personalized treatmentObjectiveOur goal was to develop a robust statistical procedure to identify a set of differentially methylated probes (DMPs) that would allow differentiation between HGSOC and benign ovarian tumors.MethodologyUsing the Infinium EPIC Methylation array, we analyzed the methylation profiles of 48 ovarian samples diagnosed with HGSOC, borderline ovarian tumors, or benign ovarian disease. Through a multi-step statistical procedure combining univariate and multivariate logistic regression models, we aimed to identify CpG sites of interest.Results and ConclusionsWe discovered 21 DMPs and developed a predictive model validated in two independent cohorts. Our model, using a distance-to-centroid approach, accurately distinguished between benign and malignant disease. This model can potentially be used in other types of sample material. Moreover, the strategy of the model development and validation can also be used in other disease contexts for diagnostic purposes. Ovarian cancer presents a major health challenge; due to unspecific symptoms it is often diagnosed at late stages, thus resulting in poor survival rates. Hence the need to identify biomarkers that would enable early and accurate diagnosis, as well as tailored treatment. In our work, we compared methylation profiles of ovarian cancer and non-malignant ovarian tissue samples, and presented a predictive algorithm, accurately distinguishing between benign and malignant ovarian disease.
引用
收藏
页码:821 / 834
页数:14
相关论文
共 57 条
[1]   Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays [J].
Aryee, Martin J. ;
Jaffe, Andrew E. ;
Corrada-Bravo, Hector ;
Ladd-Acosta, Christine ;
Feinberg, Andrew P. ;
Hansen, Kasper D. ;
Irizarry, Rafael A. .
BIOINFORMATICS, 2014, 30 (10) :1363-1369
[2]   Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models [J].
Bailly, Alexandre ;
Blanc, Corentin ;
Francis, Elie ;
Guillotin, Thierry ;
Jamal, Fadi ;
Wakim, Bechara ;
Roy, Pascal .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 213
[3]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[4]   DNA methylation and the preservation of cell identity [J].
Bogdanovic, Ozren ;
Lister, Ryan .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2017, 46 :9-14
[5]   ROBUST TESTS FOR EQUALITY OF VARIANCES [J].
BROWN, MB ;
FORSYTHE, AB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (346) :364-367
[6]   Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray [J].
Chen, Yi-an ;
Lemire, Mathieu ;
Choufani, Sanaa ;
Butcher, Darci T. ;
Grafodatskaya, Daria ;
Zanke, Brent W. ;
Gallinger, Steven ;
Hudson, Thomas J. ;
Weksberg, Rosanna .
EPIGENETICS, 2013, 8 (02) :203-209
[7]   Epigenome-wide ovarian cancer analysis identifies a methylation profile differentiating clear-cell histology with epigenetic silencing of the HERG K channel [J].
Cicek, Mine S. ;
Koestler, Devin C. ;
Fridley, Brooke L. ;
Kalli, Kimberly R. ;
Armasu, Sebastian M. ;
Larson, Melissa C. ;
Wang, Chen ;
Winham, Stacey J. ;
Vierkant, Robert A. ;
Rider, David N. ;
Block, Matthew S. ;
Klotzle, Brandy ;
Konecny, Gottfried ;
Winterhoff, Boris J. ;
Hamidi, Habib ;
Shridhar, Viji ;
Fan, Jian-Bing ;
Visscher, Daniel W. ;
Olson, Janet E. ;
Hartmann, Lynn C. ;
Bibikova, Marina ;
Chien, Jeremy ;
Cunningham, Julie M. ;
Goode, Ellen L. .
HUMAN MOLECULAR GENETICS, 2013, 22 (15) :3038-3047
[8]   DNA Methylation Profiles of Ovarian Clear Cell Carcinoma [J].
Cunningham, Julie M. ;
Winham, Stacey J. ;
Wang, Chen ;
Weiglt, Britta ;
Fu, Zhuxuan ;
Armasu, Sebastian M. ;
McCauley, Bryan M. ;
Brand, Alison H. ;
Chiew, Yoke-Eng ;
Elishaev, Esther ;
Gourley, Charlie ;
Kennedy, Catherine J. ;
Laslavic, Angela ;
Lester, Jenny ;
Piskorz, Anna ;
Sekowska, Magdalena ;
Brenton, James D. ;
Churchman, Michael ;
DeFazio, Anna ;
Drapkin, Ronny ;
Elias, Kevin M. ;
Huntsman, David G. ;
Karlan, Beth Y. ;
Kobel, Martin ;
Konner, Jason ;
Lawrenson, Kate ;
Papaemmanuil, Elli ;
Bolton, Kelly L. ;
Modugno, Francesmary ;
Goode, Ellen L. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2022, 31 (01) :132-141
[9]   Identification of prognostic DNA methylation biomarkers in patients with gastrointestinal adenocarcinomas: A systematic review of epigenome-wide studies [J].
d'Errico, Margherita ;
Alwers, Elizabeth ;
Zhang, Yan ;
Edelmann, Dominic ;
Brenner, Hermann ;
Hoffmeister, Michael .
CANCER TREATMENT REVIEWS, 2020, 82
[10]  
de Caceres Inmaculada Ibanez, 2004, Cancer Research, V64, P6476, DOI 10.1158/0008-5472.CAN-04-1529