Transport and InsP8 gating mechanisms of the human inorganic phosphate exporter XPR1

被引:1
作者
Zhu, Qinyu [1 ]
Yaggi, Madeleine F. [1 ,2 ]
Jork, Nikolaus [3 ,4 ]
Jessen, Henning J. [3 ,4 ]
Diver, Melinda M. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Struct Biol Program, New York, NY 10065 USA
[2] Weill Cornell Grad Sch Med Sci, Grad Program Physiol Biophys & Syst Biol, New York, NY USA
[3] Univ Freiburg, Inst Organ Chem, Dept Chem & Pharm, Freiburg, Germany
[4] Univ Freiburg, CIBSS Ctr Integrat Biol Signaling Studies, Freiburg, Germany
基金
美国国家卫生研究院;
关键词
CRYO-EM; CALCIFICATION; EXPRESSION;
D O I
10.1038/s41467-025-58076-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inorganic phosphate (Pi) has essential metabolic and structural roles in living organisms. The Pi exporter, XPR1/SLC53A1, is critical for cellular Pi homeostasis. When intercellular Pi is high, cells accumulate inositol pyrophosphate (1,5-InsP8), a signaling molecule required for XPR1 function. Inactivating XPR1 mutations lead to brain calcifications, causing neurological symptoms including movement disorders, psychosis, and dementia. Here, cryo-electron microscopy structures of dimeric XPR1 and functional characterization delineate the substrate translocation pathway and how InsP8 initiates Pi transport. Binding of InsP8 to XPR1, but not the related inositol polyphosphate InsP6, rigidifies the intracellular SPX domains, with InsP8 bridging the dimers and SPX and transmembrane domains. Locked in this state, the C-terminal tail is sequestered, revealing the entrance to the transport pathway, thus explaining the obligate roles of the SPX domain and InsP8. Together, these findings advance our understanding of XPR1 transport activity and expand opportunities for rationalizing disease mechanisms and therapeutic intervention.
引用
收藏
页数:14
相关论文
共 64 条
[1]   Real-space refinement in PHENIX for cryo-EM and crystallography [J].
Afonine, Pavel V. ;
Poon, Billy K. ;
Read, Randy J. ;
Sobolev, Oleg V. ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 :531-544
[2]   PHOSPHATE exporter XPR1/SLC53A1 is required for the tumorigenicity of epithelial ovarian cancer [J].
Akasu-Nagayoshi, Yoko ;
Hayashi, Tomoatsu ;
Kawabata, Ayako ;
Shimizu, Naomi ;
Yamada, Ai ;
Yokota, Naoko ;
Nakato, Ryuichiro ;
Shirahige, Katsuhiko ;
Okamoto, Aikou ;
Akiyama, Tetsu .
CANCER SCIENCE, 2022, 113 (06) :2034-2043
[3]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[4]   Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs [J].
Bepler, Tristan ;
Morin, Andrew ;
Rapp, Micah ;
Brasch, Julia ;
Shapiro, Lawrence ;
Noble, Alex J. ;
Berger, Bonnie .
NATURE METHODS, 2019, 16 (11) :1153-+
[5]   Phosphate dysregulation via the XPR1-KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer [J].
Bondeson, Daniel P. ;
Paolella, Brenton R. ;
Asfaw, Adhana ;
Rothberg, Michael, V ;
Skipper, Thomas A. ;
Langan, Carly ;
Mesa, Gabriel ;
Gonzalez, Alfredo ;
Surface, Lauren E. ;
Ito, Kentaro ;
Kazachkova, Mariya ;
Colgan, William N. ;
Warren, Allison ;
Dempster, Joshua M. ;
Krill-Burger, John M. ;
Ericsson, Maria ;
Tang, Andrew A. ;
Fung, Iris ;
Chambers, Emily S. ;
Abdusamad, Mai ;
Dumont, Nancy ;
Doench, John G. ;
Piccioni, Federica ;
Root, David E. ;
Boehm, Jesse ;
Hahn, William C. ;
Mannstadt, Michael ;
McFarland, James M. ;
Vazquez, Francisca ;
Golub, Todd R. .
NATURE CANCER, 2022, 3 (6) :681-695
[6]   Easy quantitative assessment of genome editing by sequence trace decomposition [J].
Brinkman, Eva K. ;
Chen, Tao ;
Amendola, Mario ;
van Steensel, Bas .
NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
[7]   XPR1: a regulator of cellular phosphate homeostasis rather than a Pi exporter [J].
Burns, David ;
Berlinguer-Palmini, Rolando ;
Werner, Andreas .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2024, 476 (05) :861-869
[8]   Synthesis of Densely Phosphorylated Bis-1,5-Diphospho-myo-Inositol Tetrakisphosphate and its Enantiomer by Bidirectional P-Anhydride Formation [J].
Capolicchio, Samanta ;
Wang, Huanchen ;
Thakor, Divyeshsinh T. ;
Shears, Stephen B. ;
Jessen, Henning J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (36) :9508-9511
[9]   Inositol pyrophosphate dynamics reveals control of the yeast phosphate starvation program through 1,5-IP8 and the SPX domain of Pho81 [J].
Chabert, Valentin ;
Kim, Geun-Don ;
Qiu, Danye ;
Liu, Guizhen ;
Mayer, Lydie Michaillat ;
Jamsheer, Muhammed K. ;
Jessen, Henning J. ;
Mayer, Andreas .
ELIFE, 2023, 12
[10]   The Genetics of Primary Familial Brain Calcification: A Literature Review [J].
Chen, Shih-Ying ;
Ho, Chen-Jui ;
Lu, Yan-Ting ;
Lin, Chih-Hsiang ;
Lan, Min-Yu ;
Tsai, Meng-Han .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (13)