An Algorithm for Solving Boundary Value Problems for Delay Differential Equations with Loadings

被引:1
作者
Iskakova, N. B. [1 ]
Bakirova, E. A. [1 ,2 ]
Khanzharova, B. S. [2 ]
Kadirbayeva, Zh. M. [1 ,2 ,3 ]
机构
[1] Inst Math & Math Modeling, Dept Differential Equat, A26G7T5, Alma Ata 050000, Kazakhstan
[2] Kazakh Natl Womens Teacher Training Univ, Dept Math, A05M0T6, Alma Ata 050026, Kazakhstan
[3] Int Informat Technol Univ, Dept Math & Comp Modeling, A15M0F0, Alma Ata 050040, Kazakhstan
关键词
delay differential equation; loadings; parametrization method; numerical algorithm; PARABOLIC-HYPERBOLIC EQUATION; NUMERICAL-SOLUTION; COMPUTATIONAL METHOD; IMPULSIVE SYSTEMS; SOLVABILITY;
D O I
10.1134/S1995080224606064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose an efficient numerical algorithm for solving linear two-point boundary value problem for delay differential equations with loadings. The Dzhumabaev parametrization method is applied to construct the numerical solutions. The application of the this method leads the considering problem to a system of algebraic equations and Cauchy problems for differential equation without delay argument that are easy to solve. Several illustrative examples are given to demonstrate the effectiveness of the proposed algorithm.
引用
收藏
页码:5032 / 5042
页数:11
相关论文
共 42 条
[1]   On a Solution of a Nonlinear Nonlocal Boundary Value Problem for one Class of Hyperbolic Equation [J].
Abdimanapova, P. B. ;
Temesheva, S. M. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) :2529-2541
[2]   Inverse Problems for the Loaded Parabolic-Hyperbolic Equation Involves Riemann-Liouville Operator [J].
Abdullaev, O. Kh. ;
Yuldashev, T. K. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) :1080-1090
[3]   Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations [J].
Abdullaev, V. M. ;
Aida-Zade, K. R. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (07) :1096-1109
[4]  
Afanaseva M. N., 2019, Zh. SVMO, V21, P309, DOI [10.15507/2079-6900.21.201903.309-316, DOI 10.15507/2079-6900.21.201903.309-316]
[5]   FINITE-DIFFERENCE METHODS FOR BOUNDARY-VALUE-PROBLEMS OF DIFFERENTIAL-EQUATIONS WITH DEVIATING ARGUMENTS [J].
AGARWAL, RP ;
CHOW, YM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (11) :1143-1153
[6]   NUMERICAL SOLUTION OF A CONTROL PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS WITH MULTIPOINT INTEGRAL CONDITION [J].
Assanova, A. T. ;
Bakirova, E. A. ;
Kadirbayeva, Zh M. .
INTERNATIONAL JOURNAL OF MATHEMATICS AND PHYSICS, 2019, 10 (02) :4-10
[7]   Numerical Solution to a Control Problem for Integro-Differential Equations [J].
Assanova, A. T. ;
Bakirova, E. A. ;
Kadirbayeva, Zh M. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (02) :203-221
[8]   Solvability of Nonlocal Problems for Systems of Sobolev-Type Differential Equations with a Multipoint Condition [J].
Assanova, A. T. ;
Imanchiyev, A. E. ;
Kadirbayeva, Zh. M. .
RUSSIAN MATHEMATICS, 2019, 63 (12) :1-12
[9]   On the numerical algorithms of parametrization method for solving a two-point boundary-value problem for impulsive systems of loaded differential equations [J].
Assanova, A. T. ;
Kadirbayeva, Zh. M. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04) :4966-4976
[10]   Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions [J].
Assanova, A. T. ;
Imanchiyev, A. E. ;
Kadirbayeva, Zh. M. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (04) :508-516