Decentralized multi-robot formation control in environments with non-convex and dynamic obstacles based on path planning algorithms

被引:1
作者
Ruiz-Fernandez, Luis E. [1 ,2 ]
Ruiz-Leon, Javier [1 ]
Gomez-Gutierrez, David [2 ,3 ]
Murrieta-Cid, Rafael [4 ]
机构
[1] Ctr Invest & Estudios Avanzados IPN, Automat Control Dept, Ave Bosque 1145, Zapopan 45019, Jalisco, Mexico
[2] Intel Tecnol Mexico, Intelligent Syst Res Lab, Ave Bosque 1001, Zapopan 45017, Jalisco, Mexico
[3] Tecnol Nacl Mexico, Inst Tecnol Jose Mario Molina Pasquel & Henriquez, Camino Arenero 1101, Zapopan 45017, Jalisco, Mexico
[4] Ctr Invest Matemat AC, Comp Sci Dept, Guanajuato 36023, Jalisco, Mexico
关键词
Multi-agent systems; Multi-robot systems; Formation control; Path planning; Collision avoidance; Optimal reciprocal collision avoidance (ORCA); COLLISION-AVOIDANCE; CONSENSUS; CONNECTIVITY; COOPERATION; SYSTEMS; UAVS;
D O I
10.1007/s11370-024-00582-x
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we propose a new strategy to solve the multi-robot formation problem. Considering a set of holonomic robots, a decentralized algorithm is proposed to guide the robots to achieve a predefined formation while avoiding collisions with non-convex obstacles, dynamic obstacles, and other robots. Local collision avoidance is achieved using a variant of the well-known ORCA (optical reciprocal collision avoidance) algorithm. We modify this algorithm to ensure the continuity of the robots' controls (velocities). The implementation of an online replanning algorithm, RRT, is essential to guide the robots and prevent them from getting stuck in minima. The resulting method guarantees formation convergence, and several simulations are presented to illustrate its effectiveness.
引用
收藏
页码:215 / 232
页数:18
相关论文
共 50 条
[21]   Decentralized time-varying formation control for multi-robot systems [J].
Antonelli, Gianluca ;
Arrichiello, Filippo ;
Caccavale, Fabrizio ;
Marino, Alessandro .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (07) :1029-1043
[22]   Distributed multi-robot formation control under dynamic obstacle interference [J].
Hu, Jiawei ;
Sun, Jiaze ;
Zou, Zhengyang ;
Ji, Diwei ;
Xiong, Zhenhua .
2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, :1435-1440
[23]   MULTI-ROBOT DYNAMIC FORMATION PATH PLANNING WITH IMPROVED POLYCLONAL ARTIFICIAL IMMUNE ALGORITHM [J].
Deng, Lixia ;
Ma, Xin ;
Gu, Jason ;
Li, Yibin .
CONTROL AND INTELLIGENT SYSTEMS, 2014, 42 (04) :284-291
[24]   Multi-robot local path planning based on an improved dynamic window algorithm [J].
Li, Shanze ;
Gao, Kai ;
Gong, Bo ;
Li, Qiannan .
2024 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTICS AND AUTOMATIC CONTROL, IRAC, 2024, :160-163
[25]   A Novel Cooperative Path Planning for Multi-robot Persistent Coverage with Obstacles and Coverage Period Constraints [J].
Sun, Guibin ;
Zhou, Rui ;
Di, Bin ;
Dong, Zhuoning ;
Wang, Yingxun .
SENSORS, 2019, 19 (09)
[26]   DYNAMIC BIOINSPIRED NEURAL NETWORK FOR MULTI-ROBOT FORMATION CONTROL IN UNKNOWN ENVIRONMENTS [J].
Ni, Jianjun ;
Yang, Xiaofang ;
Chen, Junfeng ;
Yang, Simon X. .
INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2015, 30 (03) :256-266
[27]   A Decentralized Method Using Artificial Moments for Multi-Robot Path-Planning [J].
Xu, Wang-bao ;
Chen, Xue-bo ;
Zhao, Jie ;
Huang, Tian-yun .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2013, 10
[28]   An Improved RRT Algorithm for Multi-Robot Formation Path Planning [J].
Wang L.-L. ;
Sui Z.-Z. ;
Pu Z.-Q. ;
Liu Z. ;
Yi J.-Q. .
Yi, Jian-Qiang, 1600, Chinese Institute of Electronics (48) :2138-2145
[29]   Efficient Path Planning and Formation Control in Multi-Robot Systems: A Neural Fields and Auto-Switching Mechanism Approach [J].
Fareh, Raouf ;
Baziyad, Mohammed ;
Rabie, Tamer Farouk ;
Khadraoui, Sofiane ;
Rahman, Mohammad Habibur .
IEEE ACCESS, 2025, 13 :8270-8285
[30]   Multi-Robot Coverage Path Planning in 3-Dimensional Environments [J].
Baras, Nikolaos ;
Dasygenis, Minas ;
Ploskas, Nikolaos .
2019 8TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2019,