A deep learning approach to optimize remaining useful life prediction for Li-ion batteries

被引:1
作者
Iftikhar, Mahrukh [1 ]
Shoaib, Muhammad [1 ]
Altaf, Ayesha [1 ]
Iqbal, Faiza [1 ]
Villar, Santos Gracia [2 ,3 ,4 ]
Lopez, Luis Alonso Dzul [2 ,3 ,5 ]
Ashraf, Imran [6 ]
机构
[1] Univ Engn & Technol, Dept Comp Sci, Lahore 54890, Pakistan
[2] Univ Europea Atlantico, Isabel Torres 21, Santander 39011, Spain
[3] Univ Int Iberoamer UNINI, Campeche 24560, Mexico
[4] Univ Int Cuanza, Cuito, Bie, Angola
[5] Univ Romana, La Romana, Dominican Rep
[6] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Energy efficiency; Li-ion batteries; Deep learning; AccuCell prodigy; Remaining useful life;
D O I
10.1038/s41598-024-77427-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurately predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is vital for improving battery performance and safety in applications such as consumer electronics and electric vehicles. While the prediction of RUL for these batteries is a well-established field, the current research refines RUL prediction methodologies by leveraging deep learning techniques, advancing prediction accuracy. This study proposes AccuCell Prodigy, a deep learning model that integrates auto-encoders and long short-term memory (LSTM) layers to enhance RUL prediction accuracy and efficiency. The model's name reflects its precision ("AccuCell") and predictive strength ("Prodigy"). The proposed methodology involves preparing a dataset of battery operational features, split using an 80-20 ratio for training and testing. Leveraging 22 variations of current (critical parameter) across three Li-ion cells, AccuCell Prodigy significantly reduces prediction errors, achieving a mean square error of 0.1305%, mean absolute error of 2.484%, and root mean square error of 3.613%, with a high R-squared value of 0.9849. These results highlight its robustness and potential for advancing battery health management.
引用
收藏
页数:14
相关论文
共 19 条
  • [1] Couture J., 2022, IEEE Trans. Transp. Electrif, V1, P1
  • [2] Prognostics in battery health management
    Goebel, Kai
    Saha, Bhaskar
    Saxena, Abhinav
    Celaya, Jose R.
    Christophersen, Jon P.
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2008, 11 (04) : 33 - 40
  • [3] Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model
    Huang, Zhelin
    Ma, Zhihua
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252
  • [4] Le D., 2011, P ANN C PROGN HLTH M, P367
  • [5] A Data-Driven Approach With Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery
    Liu, Kailong
    Shang, Yunlong
    Ouyang, Quan
    Widanage, Widanalage Dhammika
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (04) : 3170 - 3180
  • [6] Pei H., 2022, IEEE Trans. Syst. Man Cybern. Syst, V1, P1
  • [7] A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery
    Qu, Jiantao
    Liu, Feng
    Ma, Yuxiang
    Fan, Jiaming
    [J]. IEEE ACCESS, 2019, 7 : 87178 - 87191
  • [8] Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
    Ren, Lei
    Zhao, Li
    Hong, Sheng
    Zhao, Shiqiang
    Wang, Hao
    Zhang, Lin
    [J]. IEEE ACCESS, 2018, 6 : 50587 - 50598
  • [9] Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks
    Suh, Sungho
    Mittal, Dhruv Aditya
    Bello, Hymalai
    Zhou, Bo
    Jha, Mayank Shekhar
    Lukowicz, Paul
    [J]. HELIYON, 2024, 10 (16)
  • [10] Early prediction of lithium-ion battery lifetime via a hybrid deep learning model
    Tang, Yugui
    Yang, Kuo
    Zheng, Haoran
    Zhang, Shujing
    Zhang, Zhen
    [J]. MEASUREMENT, 2022, 199