A deep learning approach to optimize remaining useful life prediction for Li-ion batteries

被引:6
作者
Iftikhar, Mahrukh [1 ]
Shoaib, Muhammad [1 ]
Altaf, Ayesha [1 ]
Iqbal, Faiza [1 ]
Villar, Santos Gracia [2 ,3 ,4 ]
Lopez, Luis Alonso Dzul [2 ,3 ,5 ]
Ashraf, Imran [6 ]
机构
[1] Univ Engn & Technol, Dept Comp Sci, Lahore 54890, Pakistan
[2] Univ Europea Atlantico, Isabel Torres 21, Santander 39011, Spain
[3] Univ Int Iberoamer UNINI, Campeche 24560, Mexico
[4] Univ Int Cuanza, Cuito, Bie, Angola
[5] Univ Romana, La Romana, Dominican Rep
[6] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan, South Korea
关键词
Energy efficiency; Li-ion batteries; Deep learning; AccuCell prodigy; Remaining useful life;
D O I
10.1038/s41598-024-77427-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurately predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is vital for improving battery performance and safety in applications such as consumer electronics and electric vehicles. While the prediction of RUL for these batteries is a well-established field, the current research refines RUL prediction methodologies by leveraging deep learning techniques, advancing prediction accuracy. This study proposes AccuCell Prodigy, a deep learning model that integrates auto-encoders and long short-term memory (LSTM) layers to enhance RUL prediction accuracy and efficiency. The model's name reflects its precision ("AccuCell") and predictive strength ("Prodigy"). The proposed methodology involves preparing a dataset of battery operational features, split using an 80-20 ratio for training and testing. Leveraging 22 variations of current (critical parameter) across three Li-ion cells, AccuCell Prodigy significantly reduces prediction errors, achieving a mean square error of 0.1305%, mean absolute error of 2.484%, and root mean square error of 3.613%, with a high R-squared value of 0.9849. These results highlight its robustness and potential for advancing battery health management.
引用
收藏
页数:14
相关论文
共 19 条
[1]  
Couture J., 2022, IEEE Trans. Transp. Electrif, V1, P1
[2]   Prognostics in battery health management [J].
Goebel, Kai ;
Saha, Bhaskar ;
Saxena, Abhinav ;
Celaya, Jose R. ;
Christophersen, Jon P. .
IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2008, 11 (04) :33-40
[3]   Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model [J].
Huang, Zhelin ;
Ma, Zhihua .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252
[4]  
Le D., 2011, P ANN C PROGN HLTH M, P367
[5]   A Data-Driven Approach With Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery [J].
Liu, Kailong ;
Shang, Yunlong ;
Ouyang, Quan ;
Widanage, Widanalage Dhammika .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (04) :3170-3180
[6]  
Pei H., 2022, IEEE Trans. Syst. Man Cybern. Syst, V1, P1
[7]   A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery [J].
Qu, Jiantao ;
Liu, Feng ;
Ma, Yuxiang ;
Fan, Jiaming .
IEEE ACCESS, 2019, 7 :87178-87191
[8]   Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach [J].
Ren, Lei ;
Zhao, Li ;
Hong, Sheng ;
Zhao, Shiqiang ;
Wang, Hao ;
Zhang, Lin .
IEEE ACCESS, 2018, 6 :50587-50598
[9]   Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks [J].
Suh, Sungho ;
Mittal, Dhruv Aditya ;
Bello, Hymalai ;
Zhou, Bo ;
Jha, Mayank Shekhar ;
Lukowicz, Paul .
HELIYON, 2024, 10 (16)
[10]   Early prediction of lithium-ion battery lifetime via a hybrid deep learning model [J].
Tang, Yugui ;
Yang, Kuo ;
Zheng, Haoran ;
Zhang, Shujing ;
Zhang, Zhen .
MEASUREMENT, 2022, 199