Diverging responses of terrestrial ecosystems to water stress after disturbances

被引:3
作者
Liu, Meng [1 ,2 ]
Penuelas, Josep [3 ,4 ]
Trugman, Anna T. [5 ]
Vargas, G. German [1 ,2 ,6 ,7 ]
Yang, Linqing [1 ,2 ]
Anderegg, William R. L. [1 ,2 ]
机构
[1] Univ Utah, Sch Biol Sci, Salt Lake City, UT 84112 USA
[2] Univ Utah, Wilkes Ctr Climate Sci & Policy, Salt Lake City, UT 84112 USA
[3] CREAF, Barcelona, Spain
[4] UAB, CSIC, CREAF, Global Ecol Unit, Barcelona, Spain
[5] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA USA
[6] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR USA
[7] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR USA
基金
美国国家科学基金会;
关键词
PRIMARY PRODUCTIVITY; DROUGHT; IMPACTS; EFFICIENCY; MODELS; HEAT; GPP;
D O I
10.1038/s41558-024-02191-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Terrestrial ecosystems are major carbon (C) pools, sequestering similar to 20% of anthropogenic C emissions. However, increasing frequency and intensity of climate-sensitive disturbances (for example, drought and wildfire) threaten long-term C uptake. Although direct effects of disturbances are well-documented, indirect effects remain unknown. Here we quantify changes in the sensitivity of terrestrial gross primary production to water stress before and after severe droughts and fires. We find divergent changes across the globe, where dry regions have increased sensitivity, while wet regions have decreased sensitivity. Water availability, solar radiation, nutrient availability and biodiversity are the main drivers mediating these changes. Sensitivity takes similar to 4-5 years to recover after disturbances, but the increasing frequency of disturbances threatens this recovery. Our results reveal strong cross-system discrepancies in ecosystem responses to disturbances, highlighting the vulnerability of dryland ecosystems in future climates.
引用
收藏
页码:73 / 79
页数:24
相关论文
共 50 条
[1]   Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015 [J].
Abatzoglou, John T. ;
Dobrowski, Solomon Z. ;
Parks, Sean A. ;
Hegewisch, Katherine C. .
SCIENTIFIC DATA, 2018, 5
[2]  
Aitken A. C., 1936, Proc. R. Soc. Edinburgh, V55, P42
[3]   Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models [J].
Anderegg, W. R. L. ;
Schwalm, C. ;
Biondi, F. ;
Camarero, J. J. ;
Koch, G. ;
Litvak, M. ;
Ogle, K. ;
Shaw, J. D. ;
Shevliakova, E. ;
Williams, A. P. ;
Wolf, A. ;
Ziaco, E. ;
Pacala, S. .
SCIENCE, 2015, 349 (6247) :528-532
[4]   Community assembly influences plant trait economic spectra and functional trade-offs at ecosystem scales [J].
Anderegg, William R. L. ;
Martinez-Vilalta, Jordi ;
Mencuccini, Maurizio ;
Poyatos, Rafael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (26)
[5]   A climate risk analysis of Earth's forests in the 21st century [J].
Anderegg, William R. L. ;
Wu, Chao ;
Acil, Nezha ;
Carvalhais, Nuno ;
Pugh, Thomas A. M. ;
Sadler, Jon P. ;
Seidl, Rupert .
SCIENCE, 2022, 377 (6610) :1099-1103
[6]   Future climate risks from stress, insects and fire across US forests [J].
Anderegg, William R. L. ;
Chegwidden, Oriana S. ;
Badgley, Grayson ;
Trugman, Anna T. ;
Cullenward, Danny ;
Abatzoglou, John T. ;
Hicke, Jeffrey A. ;
Freeman, Jeremy ;
Hamman, Joseph J. .
ECOLOGY LETTERS, 2022, 25 (06) :1510-1520
[7]   Divergent forest sensitivity to repeated extreme droughts [J].
Anderegg, William R. L. ;
Trugman, Anna T. ;
Badgley, Grayson ;
Konings, Alexandra G. ;
Shaw, John .
NATURE CLIMATE CHANGE, 2020, 10 (12) :1091-U19
[8]   Tree mortality from drought, insects, and their interactions in a changing climate [J].
Anderegg, William R. L. ;
Hicke, Jeffrey A. ;
Fisher, Rosie A. ;
Allen, Craig D. ;
Aukema, Juliann ;
Bentz, Barbara ;
Hood, Sharon ;
Lichstein, Jeremy W. ;
Macalady, Alison K. ;
McDowell, Nate ;
Pan, Yude ;
Raffa, Kenneth ;
Sala, Anna ;
Shaw, John D. ;
Stephenson, Nathan L. ;
Tague, Christina ;
Zeppel, Melanie .
NEW PHYTOLOGIST, 2015, 208 (03) :674-683
[9]   Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring [J].
Begueria, Santiago ;
Vicente-Serrano, Sergio M. ;
Reig, Fergus ;
Latorre, Borja .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2014, 34 (10) :3001-3023
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32