Response of photosynthesis to light and CO2 concentration in spring wheat under progressive drought stress

被引:0
作者
Chen, Fei [1 ]
Zhang, Kai [1 ]
Yan, Shuang [2 ]
Wang, Runyuan [1 ]
Wang, Heling [1 ]
Zhao, Hong [1 ]
Zhao, Funian [1 ]
Qi, Yue [1 ]
Yang, Yang [1 ]
Wei, Xingxing [1 ]
Tang, Yurui [1 ]
机构
[1] China Meteorol Adm, Inst Arid Meteorol, Key Open Lab Arid Climate Change & Disaster Reduct, Key Lab Arid Climat Changing & Reducing Disaster G, Lanzhou 730020, Peoples R China
[2] Beijing Miyun Dist Meteorol Bur, Beijing 101500, Peoples R China
基金
中国国家自然科学基金;
关键词
Progressive drought stress; Mechanistic model; Photosynthesis response curve; Optimal light intensity; Optimal atmospheric CO2 concentration; CLIMATE-CHANGE IMPACTS; WATER-USE EFFICIENCY; GROWTH; PLANTS; MECHANISMS; INTENSITY; GRAIN; RED;
D O I
10.1186/s12870-025-06355-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Global climate change significantly affects photosynthesis in spring wheat. However, the successive dynamic effects of multiple environmental interactions on photosynthesis in spring wheat have been inadequately investigated. This study conducted pot control experiments to determine photosynthesis characteristics, namely light and CO2 response curves, in spring wheat under progressive drought stress. Results Progressive drought stress caused all parameters of the light response curve to decrease logistically and all parameters of the CO2 response curve to change exponentially. There were noticeable thresholds for these parameter changes. The ability of spring wheat to utilize light was weakened by progressive drought stress. Under all drought levels, the reduction in photosynthetic capacity was greater under strong light than under weak light. The effects on CO2 utilization and the corresponding photosynthetic capacity depended on the drought level and CO2 concentration. The optimal light intensity (I-opt) for spring wheat showed a logistic decreasing trend under progressive drought stress. Unexpectedly, the optimal atmospheric CO2 concentration (CO2opt) remained at 800 mu mol<middle dot>mol(- 1) under drought stress, which was less severe than extreme drought. Conclusions Our results showed that progressive drought stress, combined with different environmental factors, had distinct impacts on the photosynthetic efficiency and carbon assimilation capacity of spring wheat, providing a basis for rational carbon and water resource utilization in spring wheat under climate change.
引用
收藏
页数:12
相关论文
共 48 条
[1]   Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes [J].
AbdElgawad, Hamada ;
Farfan-Vignolo, Evelyn Roxana ;
de Vos, Dirk ;
Asard, Han .
PLANT SCIENCE, 2015, 231 :1-10
[2]   Physiological Responses of Plants to Combined Drought and Heat under Elevated CO2 [J].
Abdelhakim, Lamis Osama Anwar ;
Zhou, Rong ;
Ottosen, Carl-Otto .
AGRONOMY-BASEL, 2022, 12 (10)
[3]   The environmental impact of industrialization and foreign direct investment: empirical evidence from Asia-Pacific region [J].
Ahmed, Farhan ;
Ali, Imtiaz ;
Kousar, Shazia ;
Ahmed, Saira .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (20) :29778-29792
[4]   The response of photosynthesis and stomatal conductance to rising [CO2]:: mechanisms and environmental interactions [J].
Ainsworth, Elizabeth A. ;
Rogers, Alistair .
PLANT CELL AND ENVIRONMENT, 2007, 30 (03) :258-270
[5]   Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? [J].
Aranjuelo, Iker ;
Cabrera-Bosquet, Llorenc ;
Morcuende, Rosa ;
Christophe Avice, Jean ;
Nogues, Salvador ;
Luis Araus, Jose ;
Martinez-Carrasco, Rafael ;
Perez, Pilar .
JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (11) :3957-3969
[6]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[7]   Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature [J].
Ayub, Gohar ;
Smith, Renee A. ;
Tissue, David T. ;
Atkin, Owen K. .
NEW PHYTOLOGIST, 2011, 190 (04) :1003-1018
[8]   Whole-transcriptome sequence analysis of differentially expressed genes in Phormium tenax under drought stress [J].
Bai, Zhen-yu ;
Wang, Tong ;
Wu, Yin-huan ;
Wang, Ke ;
Liang, Qian-yu ;
Pan, Yuan-zhi ;
Jiang, Bei-bei ;
Zhang, Lei ;
Liu, Guang-li ;
Jia, Yin ;
Liu, Qing-lin .
SCIENTIFIC REPORTS, 2017, 7
[9]   Photosynthetic gene expression in higher plants [J].
Berry, James O. ;
Yerramsetty, Pradeep ;
Zielinski, Amy M. ;
Mure, Christopher M. .
PHOTOSYNTHESIS RESEARCH, 2013, 117 (1-3) :91-120
[10]   Climate change impacts on the potential productivity of corn and winter wheat in their primary United States growing regions [J].
Brown, RA ;
Rosenberg, NJ .
CLIMATIC CHANGE, 1999, 41 (01) :73-107