Ensemble of feature augmented convolutional neural network and deep autoencoder for efficient detection of network attacks

被引:0
|
作者
Selvakumar, B. [1 ]
Sivaanandh, M. [1 ]
Muneeswaran, K. [1 ]
Lakshmanan, B. [1 ]
机构
[1] Mepco Schlenk Engn Coll, Dept Comp Sci Engn, Sivakasi 626005, India
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
LEARNING APPROACH; INTRUSION; CLASSIFICATION;
D O I
10.1038/s41598-025-88243-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Network traffic must be monitored and analyzed for any abnormal activity in order to detect intrusions and to notify administrators of any attacks. A novel ensemble of deep learning technique is proposed to enhance the efficiency of Packet Flow Classification in Network Intrusion Detection System (NIDS). The proposed work consists of three phases: (i) Feature Augmented Convolutional Neural Network (FA-CNN) (ii) Deep Autoencoder (iii) Ensemble of FA-CNN and Deep Autoencoder. In FA-CNN, CNN is trained with augmented features selected using Mutual Information. The FA-CNN is ensembled with Deep Autoencoder to design the ensemble of the classifier. To assess the stated ensemble model, numerous experiments are conducted on benchmark datasets like NSL-KDD and CICDS2017. The result findings are compared with the recent methodologies to assess the performance of the stated work. The results indicate that the suggested work performs better than the existing works with the overall accuracy of 97% for NSLKDD and 95% for CICIDS2017 dataset. Also, the proposed method improved the detection rate of minority attack classes like U2R in NSLKDD and Hearbleed in CICIDS2017.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] SAR Ship Detection Based on Convolutional Neural Network with Deep Multiscale Feature Fusion
    Long, Yang
    Juan, Su
    Hua, Huang
    Xiang, Li
    ACTA OPTICA SINICA, 2020, 40 (02)
  • [42] Anomaly Detection on Medical Images using Autoencoder and Convolutional Neural Network
    Siddalingappa, Rashmi
    Kanagaraj, Sekar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (07) : 148 - 156
  • [43] A Deep Convolutional Neural Network for Pneumonia Detection in X-ray Images with Attention Ensemble
    An, Qiuyu
    Chen, Wei
    Shao, Wei
    DIAGNOSTICS, 2024, 14 (04)
  • [44] Phishing Website Detection Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
    Yang, Rundong
    Zheng, Kangfeng
    Wu, Bin
    Wu, Chunhua
    Wang, Xiujuan
    SENSORS, 2021, 21 (24)
  • [45] Bangla Handwritten Digit Recognition Using Autoencoder and Deep Convolutional Neural Network
    Shopon, Md
    Mohammed, Nabeel
    Abedin, Md Anowarul
    2016 INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE (IWCI), 2016, : 63 - 67
  • [46] Multipath Ensemble Convolutional Neural Network
    Wang, Xuesong
    Bao, Achun
    Cheng, Yuhu
    Yu, Qiang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (02): : 298 - 306
  • [47] Glaucoma Detection based on Deep Convolutional Neural Network
    Chen, Xiangyu
    Xu, Yanwu
    Wong, Damon Wing Kee
    Wong, Tien Yin
    Liu, Jiang
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 715 - 718
  • [48] Weighted Convolutional Neural Network Ensemble
    Frazao, Xavier
    Alexandre, Luis A.
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 674 - 681
  • [49] Seismic random noise suppression using deep convolutional autoencoder neural network
    Song, Hui
    Gao, Yang
    Chen, Wei
    Xue, Ya-juan
    Zhang, Hua
    Zhang, Xiang
    JOURNAL OF APPLIED GEOPHYSICS, 2020, 178
  • [50] A deep convolutional neural network approach for astrocyte detection
    Ilida Suleymanova
    Tamas Balassa
    Sushil Tripathi
    Csaba Molnar
    Mart Saarma
    Yulia Sidorova
    Peter Horvath
    Scientific Reports, 8