Improved prognostication of overall survival after radiotherapy in lung cancer patients by an interpretable machine learning model integrating lung and tumor radiomics and clinical parameters

被引:0
作者
Luo, Tianchen [1 ,2 ]
Yan, Meng [3 ,4 ]
Zhou, Meng [4 ]
Dekker, Andre [4 ]
Appelt, Ane L. [5 ,6 ]
Ji, Yongling [1 ]
Zhu, Ji [1 ]
de Ruysscher, Dirk [4 ]
Wee, Leonard [4 ]
Zhao, Lujun [3 ]
Zhang, Zhen [1 ,4 ]
机构
[1] Chinese Acad Sci, Hangzhou Inst Med HIM, Zhejiang Canc Hosp, Hangzhou 310022, Zhejiang, Peoples R China
[2] Natl Univ Singapore, Inst Syst Sci, Singapore 119260, Singapore
[3] Tianjin Med Univ, Natl Clin Res Ctr Canc, Dept Radiat Oncol,Canc Inst & Hosp, Key Lab Canc Prevent & Therapy,Tianjins Clin Res C, Tianjin 300060, Peoples R China
[4] Maastricht Univ, GROW Res Inst Oncol & Reprod, Dept Radiat Oncol Maastro, Med Ctr, Maastricht, Netherlands
[5] Univ Leeds, Leeds Inst Med Res St Jamess, Leeds, England
[6] St James Univ Hosp, Leeds Canc Ctr, Leeds, England
来源
RADIOLOGIA MEDICA | 2025年 / 130卷 / 01期
基金
中国国家自然科学基金;
关键词
Lung cancer; Radiomics; Prognosis; Explainable AI; SHAP;
D O I
10.1007/s11547-024-01919-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundAccurate prognostication of overall survival (OS) for non-small cell lung cancer (NSCLC) patients receiving definitive radiotherapy (RT) is crucial for developing personalized treatment strategies. This study aims to construct an interpretable prognostic model that combines radiomic features extracted from normal lung and from primary tumor with clinical parameters. Our model aimed to clarify the complex, nonlinear interactions between these variables and enhance prognostic accuracy.MethodsWe included 661 stage III NSCLC patients from three multi-national datasets: a training set (N = 349), test-set-1 (N = 229), and test-set-2 (N = 83), all undergoing definitive RT. A total of 104 distinct radiomic features were separately extracted from the regions of interest in the lung and the tumor. We developed four predictive models using eXtreme gradient boosting and selected the top 10 features based on the Shapley additive explanations (SHAP) values. These models were the tumor radiomic model (Model-T), lung radiomic model (Model-L), a combined radiomic model (Model-LT), and an integrated model incorporating clinical parameters (Model-LTC). Model performance was evaluated through Harrell's concordance index, Kaplan-Meier survival curves, time-dependent area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis. Interpretability was assessed using the SHAP framework.ResultsModel-LTC exhibited superior performance, with notable predictive accuracy (C-index: training set, 0.87; test-set-2, 0.76) and time-dependent AUC above 0.75. Complex nonlinear relationships and interactions were evident among the model's variables.ConclusionThe integration of radiomic and clinical factors within an interpretable framework significantly improved OS prediction. The SHAP analysis provided insightful interpretability, enhancing the model's clinical applicability and potential for aiding personalized treatment decisions.
引用
收藏
页码:96 / 109
页数:14
相关论文
共 44 条
  • [1] 3D Slicer image computing platform, 3D SLICER
  • [2] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [4] Association Between Interstitial Lung Disease and Outcomes After Lung Cancer Resection
    Axtell, Andrea L.
    David, Elizabeth A.
    Block, Mark I.
    Parsons, Niharika
    Habib, Robert
    Muniappan, Ashok
    [J]. ANNALS OF THORACIC SURGERY, 2023, 116 (03) : 533 - 541
  • [5] Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study
    Bradley, Jeffrey D.
    Paulus, Rebecca
    Komaki, Ritsuko
    Masters, Gregory
    Blumenschein, George
    Schild, Steven
    Bogart, Jeffrey
    Hu, Chen
    Forster, Kenneth
    Magliocco, Anthony
    Kavadi, Vivek
    Garces, Yolanda I.
    Narayan, Samir
    Iyengar, Puneeth
    Robinson, Cliff
    Wynn, Raymond B.
    Koprowski, Christopher
    Meng, Joanne
    Beitler, Jonathan
    Gaur, Rakesh
    Curran, Walter, Jr.
    Choy, Hak
    [J]. LANCET ONCOLOGY, 2015, 16 (02) : 187 - 199
  • [6] Deep Learning Detects Changes Indicative of Axial Spondyloarthritis at MRI of Sacroiliac Joints
    Bressem, Keno K.
    Adams, Lisa C.
    Proft, Fabian
    Hermann, Kay Geert A.
    Diekhoff, Torsten
    Spiller, Laura
    Niehues, Stefan M.
    Makowski, Marcus R.
    Hamm, Bernd
    Protopopov, Mikhail
    Rodriguez, Valeria Rios
    Haibel, Hildurn
    Rademacher, Judith
    Torgutalp, Murat
    Lambert, Robert G.
    Baraliakos, Xenofon
    Maksymowych, Walter P.
    Vahldiek, Janis L.
    Poddubnyy, Denis
    [J]. RADIOLOGY, 2022, 305 (03) : 655 - 665
  • [7] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [8] Baseline Radiomic Signature to Estimate Overall Survival in Patients With NSCLC
    Dercle, Laurent
    Fronheiser, Matthew
    Rizvi, Naiyer A.
    Hellmann, Matthew D.
    Maier, Sabine
    Hayes, Wendy
    Yang, Hao
    Guo, Pingzhen
    Fojo, Tito
    Schwartz, Lawrence H.
    Zhao, Binsheng
    Leung, David K.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (05) : 587 - 598
  • [9] 3D Slicer as an image computing platform for the Quantitative Imaging Network
    Fedorov, Andriy
    Beichel, Reinhard
    Kalpathy-Cramer, Jayashree
    Finet, Julien
    Fillion-Robin, Jean-Christophe
    Pujol, Sonia
    Bauer, Christian
    Jennings, Dominique
    Fennessy, Fiona
    Sonka, Milan
    Buatti, John
    Aylward, Stephen
    Miller, James V.
    Pieper, Steve
    Kikinis, Ron
    [J]. MAGNETIC RESONANCE IMAGING, 2012, 30 (09) : 1323 - 1341
  • [10] Emerging evidence for adapting radiotherapy to immunotherapy
    Galluzzi, Lorenzo
    Aryankalayil, Molykutty J.
    Coleman, C. Norman
    Formenti, Silvia C.
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2023, 20 (08) : 543 - 557