Development and validation of a real-time prediction model for acute kidney injury in hospitalized patients

被引:2
作者
Zhang, Yuhui [1 ,2 ,3 ]
Xu, Damin [1 ,2 ,3 ]
Gao, Jianwei [4 ]
Wang, Ruiguo [4 ]
Yan, Kun [5 ]
Liang, Hong [6 ]
Xu, Juan [4 ]
Zhao, Youlu [1 ,2 ,3 ]
Zheng, Xizi [1 ,2 ,3 ]
Xu, Lingyi [1 ,2 ,3 ]
Wang, Jinwei [1 ,2 ,3 ]
Zhou, Fude [1 ,2 ,3 ]
Zhou, Guopeng [7 ]
Zhou, Qingqing [1 ,2 ,3 ]
Yang, Zhao [8 ]
Chen, Xiaoli [9 ]
Shen, Yulan [10 ]
Ji, Tianrong [11 ,12 ]
Feng, Yunlin [13 ,14 ]
Wang, Ping [15 ,16 ]
Jiao, Jundong [11 ,12 ]
Wang, Li [13 ,14 ]
Lv, Jicheng [1 ,2 ,3 ]
Yang, Li [1 ,2 ,3 ]
机构
[1] Peking Univ First Hosp, Renal Div, Beijing, Peoples R China
[2] Peking Univ, Inst Nephrol, Beijing, Peoples R China
[3] Minist Hlth China, Key Lab Renal Dis, Beijing, Peoples R China
[4] Digital Hlth China Technol Co LTD, Artificial Intelligence Inst, Beijing, Peoples R China
[5] Peking Univ, Sch Comp Sci, Beijing, Peoples R China
[6] Peking Univ, Sch Software & Microelect, Beijing, Peoples R China
[7] Peking Univ First Hosp, Dept Geriatr, Beijing, Peoples R China
[8] Peking Univ First Hosp, Off Acad Res, Beijing, Peoples R China
[9] Taiyuan Cent Hosp, Renal Div, Taiyuan, Peoples R China
[10] Beijing Miyun Dist Hosp, Dept Med, Beijing, Peoples R China
[11] Harbin Med Univ, Affiliated Hosp 2, Dept Nephrol, Harbin, Peoples R China
[12] Harbin Med Univ, Inst Nephrol, Harbin, Peoples R China
[13] Sichuan Prov Peoples Hosp, Dept Nephrol, Chengdu, Peoples R China
[14] Univ Elect Sci & Technol China, Sch Med, Chengdu, Peoples R China
[15] Peking Univ, Natl Engn Res Ctr Software Engn, Beijing, Peoples R China
[16] Minist Educ, Key Lab High Confidence Software Technol, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
CRITICAL-CARE; CALIBRATION; AKI;
D O I
10.1038/s41467-024-55629-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Early prediction of acute kidney injury (AKI) may provide a crucial opportunity for AKI prevention. To date, no prediction model targeting AKI among general hospitalized patients in developing countries has been published. Here we show a simple, real-time, interpretable AKI prediction model for general hospitalized patients developed from a large tertiary hospital in China, which has been validated across five independent, geographically distinct, different tiered hospitals. The model containing 20 readily available variables demonstrates consistent, high levels of predictive discrimination in validation cohort, with AUCs for serum creatinine-based AKI and severe AKI within 48 h ranging from 0.74-0.85 and 0.83-0.90 for transported models and from 0.81-0.90 and 0.88-0.95 for refitted models, respectively. With optimal probability cutoffs, the refitted model could predict AKI at a median of 72 (24-198) hours in advance in internal validation, and 54-90 h in advance in external validation. Broad application of the model in the future may provide an effective, convenient and cost-effective approach for AKI prevention.
引用
收藏
页数:17
相关论文
共 48 条
[1]  
[Anonymous], 2012, Kidney Int Suppl (2011), V2, P1, DOI DOI 10.1038/KISUP.2012.1
[2]  
Arjovsky M., 2021, Out of Distribution Generalization in Machine Learning.
[3]  
Brier G.W., 1950, MONTHLY WEATHER REV, V78, P1, DOI [DOI 10.1175/1520-0493(1950)0780001:VOFEIT2.0.CO
[4]  
2, DOI 10.1175/1520-0493(1950)0782.0.CO
[5]  
2, 10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO
[6]  
2]
[7]   Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup [J].
Chawla, Lakhmir S. ;
Bellomo, Rinaldo ;
Bihorac, Azra ;
Goldstein, Stuart L. ;
Siew, Edward D. ;
Bagshaw, Sean M. ;
Bittleman, David ;
Cruz, Dinna ;
Endre, Zoltan ;
Fitzgerald, Robert L. ;
Forni, Lui ;
Kane-Gill, Sandra L. ;
Hoste, Eric ;
Koyner, Jay ;
Liu, Kathleen D. ;
Macedo, Etienne ;
Mehta, Ravindra ;
Murray, Patrick ;
Nadim, Mitra ;
Ostermann, Marlies ;
Palevsky, Paul M. ;
Pannu, Neesh ;
Rosner, Mitchell ;
Wald, Ron ;
Zarbock, Alexander ;
Ronco, Claudio ;
Kellum, John A. .
NATURE REVIEWS NEPHROLOGY, 2017, 13 (04) :241-257
[8]   Algorithms to estimate Shapley value feature attributions [J].
Chen, Hugh ;
Covert, Ian C. ;
Lundberg, Scott M. ;
Lee, Su-In .
NATURE MACHINE INTELLIGENCE, 2023, 5 (06) :590-601
[9]   Internal and External Validation of a Machine Learning Risk Score for Acute Kidney Injury [J].
Churpek, Matthew M. ;
Carey, Kyle A. ;
Edelson, Dana P. ;
Singh, Tripti ;
Astor, Brad C. ;
Gilbert, Emily R. ;
Winslow, Christopher ;
Shah, Nirav ;
Afshar, Majid ;
Koyner, Jay L. .
JAMA NETWORK OPEN, 2020, 3 (08) :E2012892
[10]  
Collins GS, 2015, BMJ-BRIT MED J, V350, DOI [10.1136/bmj.g7594, 10.1111/1471-0528.13244]