A biomimetic magnetically responsive scaffold with tunable and stable compression for dynamic 3D cell culture

被引:0
作者
Sun, Xiao [1 ]
Wang, Xiaohong [1 ,4 ]
Wu, Bingjie [2 ]
Yang, Qianhong [1 ,4 ]
Zhu, Congxiao [3 ]
Zhang, Huimin [1 ]
Li, Qian [1 ]
Zhou, Hongru [3 ]
Guo, Minghui [1 ]
Gui, Lin [1 ,4 ]
Li, Lei [1 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Cryogen Sci & Technol, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
[2] Tsinghua Univ, Sch Biomed Engn, Beijing 100084, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Plast Surg Hosp, Beijing 100144, Peoples R China
[4] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100039, Peoples R China
关键词
magnetically responsive scaffolds; dynamic 3D cell culture; adipose-derived stem cells; cell proliferation; cyclic compression; BIOMECHANICAL PROPERTIES; ELECTROMAGNETIC-FIELDS; MECHANICAL-PROPERTIES; HUMAN LIVER; STEM-CELLS; BEHAVIOR; TISSUES; BRAIN;
D O I
10.1007/s40843-024-3216-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetically responsive scaffolds are extensively utilized in tissue engineering for their ability to simulate dynamic three-dimensional (3D) cell microenvironment in a rapid, reversible, and contactless manner. However, existing magnetic scaffolds struggle to provide tunable dynamic compression comparable to natural tissues due to the weak magnetism of magnetic nanoparticles and the mechanical brittleness of hydrogels. Here, we propose a biomimetic 3D magnetic scaffold offering tunable and stable magnetically induced compression for dynamic 3D cell culture. By employing hard magnetic particles NdFeB@SiO2 and a mechanically stable elastomer, Ecoflex, the scaffold achieves 15% compression in the magnetic field (240 mT). Moreover, this magnetic scaffold demonstrates remarkable deformation and mechanical stability during 4000 compression cycles. The magnetic scaffold exhibits stiffness (0.78 kPa) and viscoelasticity (relaxation time of 17 s) similar to adipose tissue. Notably, it is verified that human adipose-derived stem cells (hADSCs) are successfully cultured in this magnetic scaffold and the proliferation of hADSCs can be modulated by magnetically induced dynamic compression. This magnetic scaffold for dynamic 3D cell culture can be potentially utilized in cell biology and tissue engineering. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)NdFeB@SiO2(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)Ecoflex(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(240 mT)(sic)(sic)(sic)(sic)(sic)(sic)15%(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)4000(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(0.78 kPa)(sic)(sic)(sic)(sic)((sic)(sic)(sic)(sic)(sic) 17 s). (sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(hADSCs) (sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)hADSCs(sic)(sic)(sic). (sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) (sic)(sic)(sic)(sic).
引用
收藏
页码:652 / 665
页数:14
相关论文
共 96 条
  • [91] Zhang J., 2023, CHINESE J TISSUE ENG, V27, P7
  • [92] Fault Diagnosis of Axle Box Bearing with Acoustic Signal Based on Chirplet Transform and Support Vector Machine
    Zhang, Jimin
    Hu, Xianting
    Zhong, Xujie
    Zhou, Hechao
    [J]. SHOCK AND VIBRATION, 2022, 2022
  • [93] Zhang Y, 2015, EUR REV MED PHARMACO, V19, P2671
  • [94] The synthesis of iron oxide nanoparticles in confined space
    Zhao, Yifan
    Wu, Linyuan
    Li, Yan
    Mao, Yu
    Gu, Ning
    [J]. SCIENCE CHINA-MATERIALS, 2024, 67 (08) : 2447 - 2461
  • [95] Effects of 15 Hz square wave magnetic fields on the voltage-gated sodium and potassium channels in prefrontal cortex pyramidal neurons
    Zheng, Yu
    Dou, Jun-rong
    Gao, Yang
    Dong, Lei
    Li, Gang
    [J]. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2017, 93 (04) : 449 - 455
  • [96] Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts
    Zhou, Jian
    Ming, Lei-Guo
    Ge, Bao-Feng
    Wang, Jia-Qi
    Zhu, Rui-Qing
    Wei, Zhe
    Ma, Hui-Ping
    Xian, Cory J.
    Chen, Ke-Ming
    [J]. BONE, 2011, 49 (04) : 753 - 761