Exosomal miR-122 derived from M2 macrophages induces osteogenic differentiation of bone marrow mesenchymal stem cells in the treatment of alcoholic osteonecrosis of the femoral head

被引:0
|
作者
Le, Guoping [1 ]
Wen, Riyou [1 ]
Fang, Huaixi [1 ]
Huang, Zhifa [1 ]
Wang, Yong [1 ]
Luo, Hanwen [1 ]
机构
[1] Liuzhou Workers Hosp, Dept Joint Osteopathy, Liuzhou 545000, Guangxi, Peoples R China
来源
JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH | 2025年 / 20卷 / 01期
关键词
Alcoholic osteonecrosis of the femoral head; M2; macrophages; Exosomes; miR-122; ENDOCHONDRAL OSSIFICATION; NECROSIS;
D O I
10.1186/s13018-025-05515-7
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis. M2 macrophages were identified by flow cytometry, and the isolated exosomes were characterized by transmission electron microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). Next, miR-122 was overexpressed by transfecting miR-122 mimic, and the expression of miR-122 in M2 macrophages and their exosomes was evaluated. Subsequently, the effect of exosomal miR-122 on the osteogenic differentiation ability of BMSCs was detected, including cell proliferation, expression of osteogenic-related genes (RUNX2, BMP2, OPN, ALP), and calcium nodule formation. Finally, the therapeutic effect of M2-Exo was analyzed in a rat model of AIONFH, and bone repair and pathological damage were evaluated by Micro-CT, RT-qPCR, HE, Masson staining, and immunohistochemistry (COL I). The results showed that M2 macrophages were successfully polarized, with an average M2-Exo particle size of 156.4 nm and a concentration of 3.2E + 12 particles/mL. The expression of miR-122 in M2 macrophages is significantly higher than that in M0 macrophages, and miR-122 mimic can increase the content of miR-122 in M2-Exo. miR-122 in M2-Exo can promote osteogenic differentiation of rat bone marrow BMSCs, enhance cell viability, and increase the expression of osteogenesis-related genes. After being applied to the AIONFH rat model, the injection of M2-exo and miR-122 mimics significantly improved the repair effect of articular cartilage, alleviated pathological changes, and promoted the regeneration of bone tissue. M2-macrophage-derived exosomal miR-122 induces osteogenic differentiation of bone mesenchymal stem cells in treating AIONFH.
引用
收藏
页数:12
相关论文
共 39 条
  • [21] Bone marrow mesenchymal stem cells-derived exosomes ameliorate LPS-induced acute lung injury by miR-223-regulated alveolar macrophage M2 polarization
    Xu, Hui
    Nie, Xiangbi
    Deng, Wu
    Zhou, Han
    Huang, Dan
    Wang, Zenggeng
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2024, 38 (01)
  • [22] Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization
    Cao, Li
    Xu, Hanxin
    Wang, Ge
    Liu, Mei
    Tian, Dean
    Yuan, Zhenglin
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2019, 72 : 264 - 274
  • [23] MicroRNA-141 inhibits the differentiation of bone marrow-derived mesenchymal stem cells in steroid-induced osteonecrosis via E2F3
    Xue, Fei
    Wu, Jian
    Feng, Wei
    Hao, Ting
    Liu, Yuan
    Wang, Wenbo
    MOLECULAR MEDICINE REPORTS, 2022, 26 (01)
  • [24] lncRNA IGF2-AS promotes the osteogenic differentiation of bone marrow mesenchymal stem cells by sponging miR-3,126-5p to upregulate KLK4
    Tang, Jia Zhu
    Zhao, Guo Yang
    Zhao, Jian Zhong
    Di, Dong Hua
    Wang, Bo
    JOURNAL OF GENE MEDICINE, 2021, 23 (10)
  • [25] Bone marrow mesenchymal stem cells-derived exosomal miR-381 alleviates lung ischemia-reperfusion injury by activating Treg differentiation through inhibiting YTHDF1 expression
    Gao, Cao
    Chen, Lei
    Xie, Xiang-yu
    He, Xiao-feng
    Shen, Jiang
    Zheng, Liang
    CELLULAR SIGNALLING, 2024, 124
  • [26] Exosomal miR-21-5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1
    Qi, Jin
    Zhang, Ruihao
    Wang, Yapeng
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021, 25 (23) : 11016 - 11030
  • [27] Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF
    Rui Li
    Dize Li
    Huanan Wang
    Kaiwen Chen
    Si Wang
    Jie Xu
    Ping Ji
    Stem Cell Research & Therapy, 13
  • [28] Anti-inflammatory and immunomodulatory effects of the extracellular vesicles derived from human umbilical cord mesenchymal stem cells on osteoarthritis via M2 macrophages
    Li, Kanglu
    Yan, Guohua
    Huang, Hanji
    Zheng, Mingjun
    Ma, Ke
    Cui, Xiaofei
    Lu, Dejie
    Zheng, Li
    Zhu, Bo
    Cheng, Jianwen
    Zhao, Jinmin
    JOURNAL OF NANOBIOTECHNOLOGY, 2022, 20 (01)
  • [29] Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF
    Li, Rui
    Li, Dize
    Wang, Huanan
    Chen, Kaiwen
    Wang, Si
    Xu, Jie
    Ji, Ping
    STEM CELL RESEARCH & THERAPY, 2022, 13 (01)
  • [30] Human Placental Mesenchymal Stem Cells (pMSCs) Play a Role as Immune Suppressive Cells by Shifting Macrophage Differentiation from Inflammatory M1 to Anti-inflammatory M2 Macrophages
    Abumaree, M. H.
    Al Jumah, M. A.
    Kalionis, B.
    Jawdat, D.
    Al Khaldi, A.
    Abomaray, F. M.
    Fatani, A. S.
    Chamley, L. W.
    Knawy, B. A.
    STEM CELL REVIEWS AND REPORTS, 2013, 9 (05) : 620 - 641