Means of Hitting Times for Random Walks on Graphs: Connections, Computation, and Optimization

被引:0
作者
Xia, Haisong [1 ]
Xu, Wanyue [1 ]
Zhang, Zuobai [1 ]
Zhang, Zhongzhi [1 ,2 ,3 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai Engn Res Inst Blockchains, Shanghai, Peoples R China
[3] Fudan Univ, Res Inst Intelligent Complex Syst, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Random walk; hitting time; Kemeny constant; spectral algorithm; complex network; optimization; vertex centrality; COMPLETE BINARY-TREES; 1ST-PASSAGE TIMES; KEMENYS CONSTANT; ALGORITHMS; CENTRALITY; RESISTANCE; LAPLACIAN; NETWORKS; DYNAMICS; NUMBER;
D O I
10.1145/3708561
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For random walks on graph G with n vertices and m edges, the mean hitting time H-j from a vertex chosen from the stationary distribution to vertex j measures the importance for j, while the Kemeny constant K is the mean hitting time from one vertex to another selected randomly according to the stationary distribution. In this article, we first establish a connection between the two quantities, representing K in terms of H-j for all vertices. We then develop an efficient algorithm estimating H-j for all vertices and K in nearly linear time of m. Moreover, we extend the centrality H-j of a single vertex to H(S) of a vertex set S, and establish a link between H(S) and some other quantities. We further study the NP-hard problem of selecting a group S of k << n vertices with minimum H(S), whose objective function is monotonic and supermodular. We finally propose two greedy algorithms approximately solving the problem. The former has an approximation factor (1-k/k-1 1/e) and O(kn(3)) running time, while the latter returns a (1-k/k-1 1/e-& varepsilon;)-approximation solution in nearly-linear time of m, for any parameter 0<& varepsilon;<1. Extensive experiment results validate the performance of our algorithms.
引用
收藏
页数:35
相关论文
共 98 条
  • [1] Achlioptas D., Database-friendly random projections, Proc. ACM SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst. ACM, pp. 274-281, (2001)
  • [2] Bao Q., Xu W., Zhang Z., Benchmark for discriminating power of edge centrality metrics, Comput. J., 65, 12, pp. 3141-3155, (2022)
  • [3] Bao Q., Zhang Z., Discriminating power of centrality measures in complex networks, IEEE Trans. Cybern., 52, 11, pp. 12583-12593, (2021)
  • [4] Barrat A., Barthelemy M., Pastor-Satorras R., Vespignani A., The architecture of complex weighted networks, Proc. Natl. Acad. Sci. U. S. A., 101, 11, pp. 3747-3752, (2004)
  • [5] Bavelas A., A mathematical model for group structures, Hum. Organ., 7, 3, pp. 16-30, (1948)
  • [6] Bavelas A., Communication patterns in task-oriented groups, J. Acoust. Soc. Am., 22, 6, pp. 725-730, (1950)
  • [7] Ben-Israel A., Greville T.N.E., Generalized Inverses: Theory and Applications, J. Wiley, (1974)
  • [8] Benzi M., Klymko C., On the limiting behavior of parameter-dependent network centrality measures, SIAM J. Matrix Anal. Appl., 36, 2, pp. 686-706, (2015)
  • [9] Bergamini E., Gonser T., Meyerhenke H., Scaling Up group closeness maximization, Proc. Worksh. Algorithm Eng. Exp. SIAM, pp. 209-222, (2018)
  • [10] Bergamini E., Wegner M., Lukarski D., Meyerhenke H., Estimating crrent-flow closeness centrality with a multigrid laplacian solver, Proc. 7th SIAM Workshop Comb. Sci. Comput., pp. 1-12, (2016)