Crowd evacuation path planning and simulation method based on deep reinforcement learning and repulsive force field

被引:0
|
作者
Wang, Hongyue [1 ,2 ]
Liu, Hong [1 ,2 ]
Li, Wenhao [1 ,2 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China
[2] Shandong Prov Key Lab Novel Distributed Comp Softw, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; Path planning; Computer simulation; Crowd evacuation simulation;
D O I
10.1007/s10489-024-06074-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Path planning is essential for simulating crowd evacuation. However, existing path planning methods encounter challenges, including unbalanced exit utilization, ineffective obstacle avoidance, and low evacuation efficiency. To address these issues, this paper presents a path planning method based on Deep Reinforcement Learning (DRL) and a Repulsive Force Field (RFF) for crowd evacuation simulation. First, a dynamic exit scoring mechanism is proposed and integrated into the DRL training process to balance exit utilization during evacuation. Additionally, we address the sparse reward issue in DRL by extracting key points from actual evacuation trajectories as short-term goals. Finally, we enhance the movement strategy output by constructing an RFF to improve obstacle avoidance in complex environments. Experimental results demonstrate that the proposed method effectively avoids obstacles and efficiently completes evacuation tasks.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A Guided-to-Autonomous Policy Learning method of Deep Reinforcement Learning in Path Planning
    Zhao, Wang
    Zhang, Ye
    Li, Haoyu
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA 2024, 2024, : 665 - 672
  • [32] Multi-objective path planning based on deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Cui, Yunfei
    Du, Xue
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3273 - 3279
  • [33] Dynamic Scene Path Planning of UAVs Based on Deep Reinforcement Learning
    Tang, Jin
    Liang, Yangang
    Li, Kebo
    DRONES, 2024, 8 (02)
  • [34] AUV path planning based on improved IFDS and deep reinforcement learning
    Fan, Yiqun
    Li, Hongna
    Xie, Jiaqi
    Zhou, Yunfu
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2024, 21 (06):
  • [35] Path planning of robotic arm based on deep reinforcement learning algorithm
    Al-Gabalawy M.
    Advanced Control for Applications: Engineering and Industrial Systems, 2022, 4 (01):
  • [36] Ship path planning based on Deep Reinforcement Learning and weather forecast
    Artusi, Eva
    2021 22ND IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2021), 2021, : 258 - 260
  • [37] Robot Patrol Path Planning Based on Combined Deep Reinforcement Learning
    Li, Wenqi
    Chen, Dehua
    Le, Jiajin
    2018 IEEE INT CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, UBIQUITOUS COMPUTING & COMMUNICATIONS, BIG DATA & CLOUD COMPUTING, SOCIAL COMPUTING & NETWORKING, SUSTAINABLE COMPUTING & COMMUNICATIONS, 2018, : 659 - 666
  • [38] UAV online path planning technology based on deep reinforcement learning
    Fan, Jiaxuan
    Wang, Zhenya
    Ren, Jinlei
    Lu, Ying
    Liu, Yiheng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5382 - 5386
  • [39] Dynamic Path Planning of Unknown Environment Based on Deep Reinforcement Learning
    Lei, Xiaoyun
    Zhang, Zhian
    Dong, Peifang
    JOURNAL OF ROBOTICS, 2018, 2018
  • [40] Path Planning Method of Mobile Robot Using Improved Deep Reinforcement Learning
    Wang, Wei
    Wu, Zhenkui
    Luo, Huafu
    Zhang, Bin
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2022, 2022