Magnetically and optically active edges in phosphorene nanoribbons

被引:2
作者
Ashoka, Arjun [1 ]
Clancy, Adam J. [2 ]
Panjwani, Naitik A. [3 ]
Cronin, Adam [4 ]
Picco, Loren [5 ]
Aw, Eva S. Y. [6 ]
Popiel, Nicholas J. M. [1 ]
Eaton, Alexander G. [1 ]
Parton, Thomas G. [7 ]
Shutt, Rebecca R. C. [6 ]
Feldmann, Sascha [8 ]
Carey, Remington [1 ]
Macdonald, Thomas J. [9 ,10 ,11 ]
Liu, Cheng [1 ]
Severijnen, Marion E. [12 ]
Kleuskens, Sandra [12 ]
Muscarella, Loreta A. [13 ,14 ]
Fischer, Felix R. [4 ,15 ,16 ,17 ]
Barbosa de Aguiar, Hilton [18 ]
Friend, Richard H. [1 ]
Behrends, Jan [3 ]
Christianen, Peter C. M. [12 ]
Howard, Christopher A. [6 ]
Pandya, Raj [1 ,18 ,19 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge, England
[2] UCL, Dept Chem, London, England
[3] Fachbereich Phys Freie Univ Berlin, Berlin Joint EPR Lab, D-14195 Berlin, Germany
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA USA
[5] Univ Bristol, Sch Phys, H H Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, England
[6] UCL, Dept Phys & Astron, London, England
[7] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge, England
[8] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lausanne, Switzerland
[9] Imperial Coll London, Ctr Processable Elect, London, England
[10] Imperial Coll London, Ctr Processable Elect, London, England
[11] UCL, Dept Elect & Elect Engn, London, England
[12] Radboud Univ Nijmegen, High Field Magnet Lab HFML EMFL, Nijmegen, Netherlands
[13] AMOLF, Ctr Nanophoton, Amsterdam, Netherlands
[14] Vrije Univ Amsterdam, Dept Phys & Astron, Amsterdam, Netherlands
[15] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA USA
[16] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[17] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA
[18] Sorbonne Univ, Univ PSL, Coll France, Lab Kastler Brossel,ENS,CNRS, Paris, France
[19] Univ Warwick, Dept Chem, Coventry, England
基金
英国工程与自然科学研究理事会;
关键词
GRAPHENE NANORIBBONS; FERROMAGNETISM; SURFACE; ORDER;
D O I
10.1038/s41586-024-08563-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanoribbons, nanometre-wide strips of a two-dimensional material, are a unique system in condensed matter. They combine the exotic electronic structures of low-dimensional materials with an enhanced number of exposed edges, where phenomena including ultralong spin coherence times1,2, quantum confinement3 and topologically protected states4,5 can emerge. An exciting prospect for this material concept is the potential for both a tunable semiconducting electronic structure and magnetism along the nanoribbon edge, a key property for spin-based electronics such as (low-energy) non-volatile transistors6. Here we report the magnetic and semiconducting properties of phosphorene nanoribbons (PNRs). We demonstrate that at room temperature, films of PNRs show macroscopic magnetic properties arising from their edge, with internal fields of roughly 240 to 850 mT. In solution, a giant magnetic anisotropy enables the alignment of PNRs at sub-1-T fields. By leveraging this alignment effect, we discover that on photoexcitation, energy is rapidly funnelled to a state that is localized to the magnetic edge and coupled to a symmetry-forbidden edge phonon mode. Our results establish PNRs as a fascinating system for studying the interplay between magnetism and semiconducting ground states at room temperature and provide a stepping-stone towards using low-dimensional nanomaterials in quantum electronics.
引用
收藏
页码:348 / 353
页数:10
相关论文
共 52 条
[1]   Seeking room-temperature ferromagnetic semiconductors [J].
Ando, Koji .
SCIENCE, 2006, 312 (5782) :1883-1885
[2]  
Ashoka A., 2025, Zenodo, DOI [10.5281/zenodo.142116566, DOI 10.5281/ZENODO.142116566]
[3]   Exciton-coupled coherent magnons in a 2D semiconductor [J].
Bae, Youn Jue ;
Wang, Jue ;
Scheie, Allen ;
Xu, Junwen ;
Chica, Daniel G. ;
Diederich, Geoffrey M. ;
Cenker, John ;
Ziebel, Michael E. ;
Bai, Yusong ;
Ren, Haowen ;
Dean, Cory R. ;
Delor, Milan ;
Xu, Xiaodong ;
Roy, Xavier ;
Kent, Andrew D. ;
Zhu, Xiaoyang .
NATURE, 2022, 609 (7926) :282-+
[4]   Exceptional ballistic transport in epitaxial graphene nanoribbons [J].
Baringhaus, Jens ;
Ruan, Ming ;
Edler, Frederik ;
Tejeda, Antonio ;
Sicot, Muriel ;
Taleb-Ibrahimi, Amina ;
Li, An-Ping ;
Jiang, Zhigang ;
Conrad, Edward H. ;
Berger, Claire ;
Tegenkamp, Christoph ;
de Heer, Walt A. .
NATURE, 2014, 506 (7488) :349-354
[5]   Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons [J].
Blackwell, Raymond E. ;
Zhao, Fangzhou ;
Brooks, Erin ;
Zhu, Junmian ;
Piskun, Ilya ;
Wang, Shenkai ;
Delgado, Aidan ;
Lee, Yea-Lee ;
Louie, Steven G. ;
Fischer, Felix R. .
NATURE, 2021, 600 (7890) :647-+
[6]   Tutorial: Basic principles, limits of detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and spintronics [J].
Buchner, M. ;
Hoefler, K. ;
Henne, B. ;
Ney, V. ;
Ney, A. .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (16)
[7]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[8]   High-Performance Broadband Faraday Rotation Spectroscopy of 2D Materials and Thin Magnetic Films [J].
Carey, Benjamin ;
Wessling, Nils Kolja ;
Steeger, Paul ;
Klusmann, Christoph ;
Schneider, Robert ;
Fix, Mario ;
Schmidt, Robert ;
Albrecht, Manfred ;
de Vasconcellos, Steffen Michaelis ;
Bratschitsch, Rudolf ;
Arora, Ashish .
SMALL METHODS, 2022, 6 (11)
[9]   SquidLab-A user-friendly program for background subtraction and fitting of magnetization data [J].
Coak, Matthew J. ;
Liu, Cheng ;
Jarvis, David M. ;
Park, Seunghyun ;
Cliffe, Matthew J. ;
Goddard, Paul A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (02)
[10]   Tuning Phosphorene Nanoribbon Electronic Structure through Edge Oxidization [J].
Ding, Bangfu ;
Chen, Wei ;
Tang, Zilong ;
Zhang, Junying .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (04) :2149-2158