Levi Classes of Quasivarieties of Nilpotent Groups of Class at Most Two

被引:0
|
作者
Shakhova, S. A. [1 ]
机构
[1] Altai State Univ, Barnaul, Russia
关键词
quasivariety; Levi class; nilpotent group;
D O I
10.1007/s10469-024-09761-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Levi class LM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\left(\mathcal{M}\right)$$\end{document} generated by a class M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\mathcal{M}\right)$$\end{document} of groups is the class of all groups in which the normal closure of every cyclic subgroup belongs to M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\mathcal{M}\right)$$\end{document}. Let p be a prime and p not equal 2, let Hp be a free group of rank 2 in the variety of nilpotent groups of class at most 2 with commutator subgroup of exponent p, and let qHp be the quasivariety generated by the group Hp. It is shown that there exists a set of quasivarieties M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{M}$$\end{document} of cardinality continuum such that LM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\left(\mathcal{M}\right)$$\end{document} = L(qHp). Let s be a natural number, s >= 2. We specify a system of quasi-identities defining L(q(Hp, Zps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{{p}<^>{s}}$$\end{document})), and prove that there exists a set of quasivarieties M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{M}$$\end{document} of cardinality continuum such that LM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\left(\mathcal{M}\right)$$\end{document} = L(q(Hp, Zps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{{p}<^>{s}}$$\end{document})), where Zps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{{p}<^>{s}}$$\end{document} is a cyclic group of order ps; q(Hp, Zps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{{p}<^>{s}}$$\end{document}) is the quasivariety generated by the groups Hp and Zps.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z}_{{p}<^>{s}}.$$\end{document}
引用
收藏
页码:501 / 515
页数:15
相关论文
共 50 条
  • [41] Free nilpotent R-groups of class 2
    M. G. Amaglobeli
    V. N. Remeslennikov
    Doklady Mathematics, 2012, 85 : 236 - 239
  • [42] Free nilpotent R-groups of class 2
    Amaglobeli, M. G.
    Remeslennikov, V. N.
    DOKLADY MATHEMATICS, 2012, 85 (02) : 236 - 239
  • [43] G-covering subgroup systems for the classes of supersoluble and nilpotent groups
    Guo, WB
    Shum, KP
    Skiba, A
    ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) : 125 - 138
  • [45] G-covering subgroup systems for the classes of supersoluble and nilpotent groups
    Wenbin Guo
    K. P. Shum
    Alexander Skiba
    Israel Journal of Mathematics, 2003, 138 : 125 - 138
  • [46] A covering subgroup system for the class of p-nilpotent groups
    J. Huang
    N. Yang
    B. Hu
    X. Yu
    Siberian Mathematical Journal, 2012, 53 : 352 - 360
  • [47] A note on a class of generalized nilpotent groups introduced by Bechtell and Doerk
    Kirtland, Joseph
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (10) : 4142 - 4148
  • [48] On the degree of polynomial subgroup growth in class 2 nilpotent groups
    Pirita Maria Paajanen
    Israel Journal of Mathematics, 2007, 157 : 323 - 332
  • [49] Two Matrix Theorems Arising from Nilpotent Groups
    Zhao, Jing
    Liu, Heguo
    ALGEBRA COLLOQUIUM, 2024, 31 (03) : 499 - 504
  • [50] On the third tensor power of a nilpotent group of class two
    Asheghi, E.
    Jafari, S. Hadi
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02):