Gradient Regularity for the Solutions to p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian Equations with Logarithmic PerturbationGradient Regularity for the Solutions to p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian EquationsM.-P. Tran, T.-N. Nguyen

被引:0
作者
Minh-Phuong Tran [1 ]
Thanh-Nhan Nguyen [2 ]
机构
[1] Ton Duc Thang University,Applied Analysis Research Group, Faculty of Mathematics and Statistics
[2] Ho Chi Minh City University of Education,Group of Analysis and Applied Mathematics, Department of Mathematics
关键词
Elliptic problems; -Laplacian operator; Logarithmic growth; Fractional maximal operators; Calderón–Zygmund type estimates; Lorentz spaces; 35J92; 35J20; 46E30;
D O I
10.1007/s12220-025-01914-8
中图分类号
学科分类号
摘要
In the present paper, we propose the investigation of variable exponent p-Laplace equations with logarithmic growth in divergence form. Under weak regularity assumptions on the boundary of domains and the exponent p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}, the global gradient bounds in norms for solutions are well-established in a class of generalized function spaces via the presence of fractional maximal operators Mα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{M}}_\alpha $$\end{document}. This effort can be developed in the theory of energy functionals satisfying certain nonstandard growth conditions, including problems governed by the p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian operator.
引用
收藏
相关论文
共 31 条
[21]   Fixed point results on nonlinear composition operators A∘B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\circ B$\end{document} and applications [J].
Bibo Zhou ;
Yiping Du .
Journal of Inequalities and Applications, 2025 (1)
[22]   Lp(I,Cα(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(I,C^\alpha (\Omega ))$$\end{document} Regularity for Diffusion Equations with Non-smooth Data [J].
Patrick Dondl ;
Marius Zeinhofer .
Results in Mathematics, 2023, 78 (4)
[23]   A new P0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_0$$\end{document} weak Galerkin finite element scheme for second-order problems [J].
AllahBakhsh Yazdani Charati ;
Hamid Momeni ;
Mohammed S. Cheichan .
Computational and Applied Mathematics, 2021, 40 (4)
[24]   Existence results for anti-periodic fractional coupled systems with p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-$$\end{document}Laplacian operator via measure of noncompactness in Banach spaces [J].
Ali El Mfadel ;
Said Melliani ;
M’hamed Elomari .
Journal of Mathematical Sciences, 2023, 271 (2) :162-175
[25]   On a planar Hartree–Fock type system involving the (2,q)-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,q)-$$\end{document}Laplacian in the zero mass case [J].
J. C. de Albuquerque ;
J. L. Carvalho ;
E. D. Silva .
Nonlinear Differential Equations and Applications NoDEA, 2025, 32 (2)
[26]   On the existence, regularity and uniqueness of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-solutions to the steady-state 3D Boussinesq system in the whole space and with gravity acceleration [J].
Oscar Jarrín .
Partial Differential Equations and Applications, 2024, 5 (3)
[27]   Two-weight norm inequalities for fractional integral operators with Aλ,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{\lambda,\infty}$\end{document} weights [J].
Junren Pan ;
Wenchang Sun .
Journal of Inequalities and Applications, 2019 (1)
[28]   Some Applications of L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-Estimates of Fractional Integral Operators in Lorentz Spaces [J].
Muhamad Jamaludin ;
Daniel Salim ;
Denny Ivanal Hakim .
Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46 (5)
[29]   Integral Solution for a Parabolic Equation Driven by the p(x)-Laplacian Operator with Nonlinear Boundary Conditions and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} Data [J].
Nour Eddine Alaa ;
Abderrahim Charkaoui ;
Malika El Ghabi ;
Mohamed El Hathout .
Mediterranean Journal of Mathematics, 2023, 20 (5)