共 31 条
[21]
Fixed point results on nonlinear composition operators A∘B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$A\circ B$\end{document} and applications
[J].
Journal of Inequalities and Applications,
2025 (1)
[22]
Lp(I,Cα(Ω))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p(I,C^\alpha (\Omega ))$$\end{document} Regularity for Diffusion Equations with Non-smooth Data
[J].
Results in Mathematics,
2023, 78 (4)
[23]
A new P0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_0$$\end{document} weak Galerkin finite element scheme for second-order problems
[J].
Computational and Applied Mathematics,
2021, 40 (4)
[24]
Existence results for anti-periodic fractional coupled systems with p-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p-$$\end{document}Laplacian operator via measure of noncompactness in Banach spaces
[J].
Journal of Mathematical Sciences,
2023, 271 (2)
:162-175
[25]
On a planar Hartree–Fock type system involving the (2,q)-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2,q)-$$\end{document}Laplacian in the zero mass case
[J].
Nonlinear Differential Equations and Applications NoDEA,
2025, 32 (2)
[26]
On the existence, regularity and uniqueness of Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p$$\end{document}-solutions to the steady-state 3D Boussinesq system in the whole space and with gravity acceleration
[J].
Partial Differential Equations and Applications,
2024, 5 (3)
[27]
Two-weight norm inequalities for fractional integral operators with Aλ,∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$A_{\lambda,\infty}$\end{document} weights
[J].
Journal of Inequalities and Applications,
2019 (1)
[28]
Some Applications of L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^1$$\end{document}-Estimates of Fractional Integral Operators in Lorentz Spaces
[J].
Bulletin of the Malaysian Mathematical Sciences Society,
2023, 46 (5)
[29]
Integral Solution for a Parabolic Equation Driven by the p(x)-Laplacian Operator with Nonlinear Boundary Conditions and L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{1}$$\end{document} Data
[J].
Mediterranean Journal of Mathematics,
2023, 20 (5)
[30]
Nonlinear Elliptic Equations Without Sign Condition and L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{1}$\end{document}-Data in Musielak-Orlicz-Sobolev Spaces
[J].
Acta Applicandae Mathematicae,
2019, 159 (1)
:95-117