Gradient Regularity for the Solutions to p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian Equations with Logarithmic PerturbationGradient Regularity for the Solutions to p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian EquationsM.-P. Tran, T.-N. Nguyen

被引:0
|
作者
Minh-Phuong Tran [1 ]
Thanh-Nhan Nguyen [2 ]
机构
[1] Ton Duc Thang University,Applied Analysis Research Group, Faculty of Mathematics and Statistics
[2] Ho Chi Minh City University of Education,Group of Analysis and Applied Mathematics, Department of Mathematics
关键词
Elliptic problems; -Laplacian operator; Logarithmic growth; Fractional maximal operators; Calderón–Zygmund type estimates; Lorentz spaces; 35J92; 35J20; 46E30;
D O I
10.1007/s12220-025-01914-8
中图分类号
学科分类号
摘要
In the present paper, we propose the investigation of variable exponent p-Laplace equations with logarithmic growth in divergence form. Under weak regularity assumptions on the boundary of domains and the exponent p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}, the global gradient bounds in norms for solutions are well-established in a class of generalized function spaces via the presence of fractional maximal operators Mα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{M}}_\alpha $$\end{document}. This effort can be developed in the theory of energy functionals satisfying certain nonstandard growth conditions, including problems governed by the p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian operator.
引用
收藏
相关论文
共 31 条