Local Discontinuous Galerkin Method for the Variable-Order Fractional Mobile-Immobile Advection-Dispersion Equation

被引:0
作者
Yang, Miaomiao [1 ]
Liu, Lijie [2 ]
Wei, Leilei [2 ]
机构
[1] Zhengzhou Business Univ, Gen Educ Ctr, Zhengzhou, Peoples R China
[2] Henan Univ Technol, Sch Math & Stat, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
the Coimbra VO fractional derivative; stability; error estimate; SPECTRAL COLLOCATION METHOD; FINITE-DIFFERENCE METHOD; SOLUTE TRANSPORT; NUMERICAL-METHOD; TIME; DIFFUSION; APPROXIMATIONS; CONVERGENCE; SCHEMES; MODELS;
D O I
10.1134/S0965542524702038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a high-order local discontinuous Galerkin (LDG) method is proposed to solve the variable-order (VO) fractional mobile-immobile advection-dispersion equation with the Coimbra VO fractional derivative operator. The LDG method in space and the finite difference method in time are the foundations for the method proposed in this paper. We demonstrate that the scheme is unconditionally stable and convergent for alpha(t) is an element of(0,1). Finally, the correctness of the theoretical analysis is verified by some numerical experiments.
引用
收藏
页码:308 / 319
页数:12
相关论文
共 49 条
[1]   Local discontinuous Galerkin method for time variable order fractional differential equations with sub-diffusion and super-diffusion [J].
Ahmadinia, M. ;
Safari, Z. ;
Abbasi, M. .
APPLIED NUMERICAL MATHEMATICS, 2020, 157 :602-618
[2]   Analysis of local discontinuous Galerkin method for time-space fractional sine-Gordon equations [J].
Ahmadinia, M. ;
Safari, Z. .
APPLIED NUMERICAL MATHEMATICS, 2020, 148 :1-17
[3]   A high order schema for the numerical solution of the fractional ordinary differential equations [J].
Cao, Junying ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 238 :154-168
[4]   Exponential Convergence of hp-discontinuous Galerkin Method for Nonlinear Caputo Fractional Differential Equations [J].
Chen, Yanping ;
Wang, Lina ;
Yi, Lijun .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
[5]  
Chen Z, 2011, IAHS-AISH P, V341, P154
[6]   Mechanics with variable-order differential operators [J].
Coimbra, CFM .
ANNALEN DER PHYSIK, 2003, 12 (11-12) :692-703
[7]   Fourth-order numerical method for the space time tempered fractional diffusion-wave equation [J].
Dehghan, Mehdi ;
Abbaszadeh, Mostafa ;
Deng, Weihua .
APPLIED MATHEMATICS LETTERS, 2017, 73 :120-127
[8]   Smoothness and stability of the solutions for nonlinear fractional differential equations [J].
Deng, Weihua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1768-1777
[9]   High-Order Compact Difference Schemes for the Modified Anomalous Subdiffusion Equation [J].
Ding, Hengfei ;
Li, Changpin .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (01) :213-242
[10]   Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation [J].
Du, Yanwei ;
Liu, Yang ;
Li, Hong ;
Fang, Zhichao ;
He, Siriguleng .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 344 :108-126