Effective macropore diffusivity of carbon dioxide on binderless pellets of Y-type zeolites

被引:0
作者
Azzan, Hassan [1 ]
Gmyrek, Killian [1 ]
Danaci, David [1 ,2 ,3 ]
Rajagopalan, Ashwin Kumar [4 ]
Petit, Camille [1 ]
Pini, Ronny [1 ]
机构
[1] Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
[2] Imperial Coll London, Sargent Ctr Proc Syst Engn, London SW7 2AZ, England
[3] Imperial Coll London, I X Ctr AI Sci, London W12 0BZ, England
[4] Univ Manchester, Dept Chem Engn, Manchester M13 9PL, England
来源
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY | 2025年 / 31卷 / 02期
基金
英国科研创新办公室;
关键词
Zero length column; Diffusion; Carbon Dioxide; Zeolites; MASS-TRANSFER; 13X ZEOLITE; ADSORPTION; CO2; ADSORBENTS; KINETICS;
D O I
10.1007/s10450-025-00599-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption kinetics of carbon dioxide (CO2) in three cationic forms of binderless pellets of Y-types zeolites (H-Y, Na-Y, and TMA exchanged Na-Y) are studied using the zero-length column (ZLC) technique. The measurements were carried out at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$288.15\,\textrm{K},298.15\,\textrm{K}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${308.15}\,\textrm{K}$$\end{document} using different flowrates and an initial CO2 partial pressure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0.10} \,\textrm{bar}$$\end{document}- conditions representative of post-combustion CO2 capture applications. The mass transport within the adsorbent pellets was described using a 1-D Fickian diffusion model accounting for intra- and inter-crystalline mass transport. For the latter, the parallel pore model formulation was used to explicitly account for the adsorbent's macropore size distribution in estimating the volume-averaged diffusivity of the gas. Experiments carried out using different carrier gases, namely helium and nitrogen, were used (i) to determine that these systems are macropore diffusion limited and (ii) to simplify the parameter estimation to a single parameter - the macropore tortuosity. The latter (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1.3-2.5$$\end{document}) was in good agreement with independent measurements using MIP (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \approx 1.7$$\end{document}). The associated diffusion coefficient, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D<^>\textrm{e}_\textrm{mac}$$\end{document}, was found to vary due to differences in the materials' macropore size distributions and overall porosity. Upon combining the parallel pore model formulation with the temperature dependencies for the pore diffusivities derived from molecular theories of gases, we predict \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D<^>\textrm{e}_\textrm{mac}\propto {T<^>b}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=[0.78-0.88]$$\end{document} depending on the macropore size distribution. Notably, for the range of temperature tested in this study, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D<^>\textrm{e}_\textrm{mac}$$\end{document} varies approximately linearly with temperature (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\approx 1$$\end{document})- in contrast to the commonly reported correlation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=1.75$$\end{document}, which may be more appropriate for systems where molecular diffusion dominates and Knudsen diffusion is negligible. The binderless pellets of Y-type zeolites studied exhibit generally higher values for the effective macropore diffusivity of CO2 compared to previously reported results on commercial FAU zeolites.
引用
收藏
页数:21
相关论文
共 49 条
  • [1] Separation of CO2/N2 in Ion-Exchange binder-free beads of zeolite NaY for Post-Combustion CO2 capture
    Aly, Ezzeldin
    Zafanelli, Lucas F. A. S.
    Henrique, Adriano
    Gleichmann, Kristin
    Rodrigues, Alirio E.
    Freitas, Francisco A. Da Silva
    Silva, Jose A. C.
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 348
  • [2] Synergistic material and process development: Application of a metal-organic framework, Cu-TDPAT, in single-cycle hydrogen purification and CO2 capture from synthesis gas
    Asgari, Mehrdad
    Streb, Anne
    van der Spek, Mijndert
    Queen, Wendy
    Mazzotti, Marco
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 414
  • [3] Unary Adsorption Equilibria of Hydrogen, Nitrogen, and Carbon Dioxide on Y-Type Zeolites at Temperatures from 298 to 393 K and at Pressures up to 3 MPa
    Azzan, Hassan
    Danaci, David
    Petit, Camille
    Pini, Ronny
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2023, 68 (12) : 3512 - 3524
  • [4] Simultaneous Estimation of Gas Adsorption Equilibria and Kinetics of Individual Shaped Adsorbents
    Azzan, Hassan
    Rajagopalan, Ashwin Kumar
    L'Hermitte, Anouk
    Pini, Ronny
    Petit, Camille
    [J]. CHEMISTRY OF MATERIALS, 2022, 34 (15) : 6671 - 6686
  • [5] Analysis of a Batch Adsorber Analogue for Rapid Screening of Adsorbents for Postcombustion CO2 Capture
    Balashankar, Vishal Subramanian
    Rajagopalan, Ashwin Kumar
    de Pauw, Ruben
    Avila, Adolfo M.
    Rajendran, Arvind
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (08) : 3314 - 3328
  • [6] The changing state of porous materials
    Bennett, Thomas D.
    Coudert, Francois-Xavier
    James, Stuart L.
    Cooper, Andrew, I
    [J]. NATURE MATERIALS, 2021, 20 (09) : 1179 - 1187
  • [7] Heat effects in ZLC experiments
    Brandani, S
    Cavalcante, CL
    Guimaraes, A
    Ruthven, D
    [J]. ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 1998, 4 (3-4): : 275 - 285
  • [8] The zero length column technique to measure adsorption equilibrium and kinetics: lessons learnt from 30 years of experience
    Brandani, Stefano
    Mangano, Enzo
    [J]. ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2021, 27 (03): : 319 - 351
  • [9] Using a volumetric apparatus to identify and measure the mass transfer resistance in commercial adsorbents
    Brandani, Stefano
    Brandani, Federico
    Mangano, Enzo
    Pullumbi, Pluton
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 304
  • [10] Bukowski B.C., 2021, Connecting theory and simulation with experiment for the study of diffusion in nanoporous solids, DOI [10.1007/s10450-021-00314-y, DOI 10.1007/S10450-021-00314-Y]