A 1 km monthly dataset of historical and future climate changes over China

被引:4
作者
Hu, Xiaofei [1 ]
Shi, Shaolin [1 ]
Zhou, Borui [1 ]
Ni, Jian [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Coll Life Sci, Jianhua 321004, Peoples R China
[2] Jinhua Mt Observat & Res Stn Subtrop Forest Ecosys, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
SPATIAL INTERPOLATION; RIVER-BASIN; MODEL; TEMPERATURE; PRECIPITATION; SURFACES; IMPACTS; SIMULATION;
D O I
10.1038/s41597-025-04761-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-resolution climate data are important for understanding the impacts of climate change on multiple sectors worldwide. In this study, based on the latest released meteorological records during 1991-2020 and the recently updated general circulation models (GCMs), we established a 30-year averaged 0.01 degrees (approximate to 1 km) dataset of 5 basic climate variables and 23 bioclimatic variables, using ANUSPLIN software, delta correction (DC) downscaling, and cubic spline resampling method. Each variable contained monthly gridded historical data during 1991-2020 and bias-corrected future data over three periods (2021-2040, 2041-2070, 2071-2100), three scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) and 10 GCMs (including an ensemble model). The historical interpolations generated by the ANUSPLIIN software showed a good fit (above 0.91) with observations. The DC correction improved the accuracy of most GCM original simulations, reducing the bias by 0.69%-58.63%. This new dataset therefore demonstrates reliable data quality, and further provides high-resolution and bias-corrected long-term averaged historical and future climate data across China for ecological and climate impact studies.
引用
收藏
页数:15
相关论文
共 69 条
[1]  
[Anonymous], 2012, U.S. Geological Survey Data Series, DOI DOI 10.3133/DS691
[2]   CLIMBra - Climate Change Dataset for Brazil [J].
Ballarin, Andre Simoes ;
Sone, Jullian Souza ;
Gesualdo, Gabriela Chiquito ;
Schwamback, Dimaghi ;
Reis, Alan ;
Almagro, Andre ;
Wendland, Edson Cezar .
SCIENTIFIC DATA, 2023, 10 (01)
[3]   An empirical evaluation of bias correction methods for palaeoclimate simulations [J].
Beyer, Robert ;
Krapp, Mario ;
Manica, Andrea .
CLIMATE OF THE PAST, 2020, 16 (04) :1493-1508
[4]   Social and economic impacts of climate [J].
Carleton, Tamma A. ;
Hsiang, Solomon M. .
SCIENCE, 2016, 353 (6304)
[5]  
Central Weather Bureau of Taiwan, 2020, ABOUT US
[6]  
Cheng Q., 2022, J. Glob. Change Data Discov, V6, P533
[7]  
Cherlet M., 2018, World Atlas of Desertification, V3rd, DOI DOI 10.2760/9205
[8]  
China Meteorological Data Service Center, 2020, ABOUT US
[9]  
CMA, 2017, GB/T 34412-2017
[10]   An update of high-resolution monthly climate surfaces for Mexico [J].
Cuervo-Robayo, Angela P. ;
Tellez-Valdes, Oswaldo ;
Gomez-Albores, Miguel A. ;
Venegas-Barrera, Crystian S. ;
Manjarrez, Javier ;
Martinez-Meyer, Enrique .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2014, 34 (07) :2427-2437