Optimal transport with optimal transport cost: the Monge-Kantorovich problem on Wasserstein spaces

被引:0
|
作者
Emami, Pedram [1 ]
Pass, Brendan [1 ]
机构
[1] Univ Alberta, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
POLAR FACTORIZATION; MAPS;
D O I
10.1007/s00526-024-02905-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Monge-Kantorovich problem between two random measures. More precisely, given probability measures P1,P2 is an element of P(P(M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}_1,{\mathbb {P}}_2\in {\mathcal {P}}({\mathcal {P}}(M))$$\end{document} on the space P(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}(M)$$\end{document} of probability measures on a smooth compact manifold, we study the optimal transport problem between P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}_1$$\end{document} and P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}_2 $$\end{document} where the cost function is given by the squared Wasserstein distance W22(mu,nu)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_2<^>2(\mu ,\nu )$$\end{document} between mu,nu is an element of P(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ,\nu \in {\mathcal {P}}(M)$$\end{document}. Under appropriate assumptions on P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}_1$$\end{document}, we prove that there exists a unique optimal plan and that it takes the form of an optimal map. An extension of this result to cost functions of the form h(W2(mu,nu))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(W_2(\mu ,\nu ))$$\end{document}, for strictly convex and strictly increasing functions h, is also established. The proofs rely heavily on a recent result of Schiavo (J Funct Anal 278(6):108397, 2020), which establishes a version of Rademacher's theorem on Wasserstein spaces.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Causal transport plans and their Monge-Kantorovich problems
    Lassalle, Remi
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (03) : 452 - 484
  • [22] The multistochastic Monge-Kantorovich problem
    Gladkov, Nikita A.
    Kolesnikov, Alexander, V
    Zimin, Alexander P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (02)
  • [23] Optimal Design Versus Maximal Monge-Kantorovich Metrics
    Bolbotowski, Karol
    Bouchitte, Guy
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 243 (03) : 1449 - 1524
  • [24] Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport?
    Korotin, Alexander
    Kolesov, Alexander
    Burnaev, Evgeny
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] On Monge-Kantorovich problem in the plane
    Shen, Yinfang
    Zheng, Weian
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) : 267 - 271
  • [26] A FORMULA FOR THE OPTIMAL VALUE IN THE MONGE-KANTOROVICH PROBLEM WITH A SMOOTH COST FUNCTION, AND A CHARACTERIZATION OF CYCLICALLY MONOTONE MAPPINGS
    LEVIN, VL
    MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (02): : 533 - 548
  • [27] On the matrix Monge-Kantorovich problem
    Chen, Yongxin
    Gangbo, Wilfrid
    Georgiou, Tryphon T.
    Tannenbaum, Allen
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2020, 31 (04) : 574 - 600
  • [28] A note on Monge-Kantorovich problem
    Feng, Pengbin
    Peng, Xuhui
    STATISTICS & PROBABILITY LETTERS, 2014, 84 : 204 - 211
  • [29] Transport density in Monge-Kantorovich problems with Dirichlet conditions
    Buttazzo, G
    Stepanov, E
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (04) : 607 - 628
  • [30] Continuity of an optimal transport in Monge problem
    Fragalà, I
    Gelli, MS
    Pratelli, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (09): : 1261 - 1294