Edgeworth Expansion and Large Deviations for the Coefficients of Products of Positive Random Matrices

被引:0
作者
Xiao, Hui [1 ]
Grama, Ion [2 ]
Liu, Quansheng [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Bretagne Sud, CNRS UMR LMBA 6205, F-56017 Vannes, France
关键词
Products of positive random matrices; Berry-Esseen theorem; Edgeworth expansion; Precise large deviations; Local limit theorem; Spectral gap; SPECTRAL GAP PROPERTIES; RANDOM-WALKS; LIMIT-THEOREMS; ASYMPTOTICS;
D O I
10.1007/s10959-025-01406-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the matrix products Gn:=gn & ctdot;g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n: = g_n \cdots g_1$$\end{document}, where (gn)n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_{n})_{n\geqslant 1}$$\end{document} is a sequence of independent and identically distributed positive random dxd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\times d$$\end{document} matrices. Under the optimal third moment condition, we first establish a Berry-Esseen theorem and an Edgeworth expansion for the (i, j)-th entry Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} of the matrix Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}, where 1 <= i,j <= d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leqslant i, j \leqslant d$$\end{document}. Utilizing the Edgeworth expansion for Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} under the changed probability measure, we then prove precise upper and lower large deviation asymptotics for the entries Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} subject to an exponential moment assumption. As applications, we deduce local limit theorems with large deviations for Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} and establish upper and lower large deviations bounds for the spectral radius rho(Gn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (G_n)$$\end{document} of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}. A byproduct of our approach is the local limit theorem for Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} under the optimal second moment condition. In the proofs we develop a spectral gap theory for both the norm cocycle and the coefficients, which is of independent interest.
引用
收藏
页数:54
相关论文
共 50 条
[31]   Large deviations of extreme eigenvalues of generalized sample covariance matrices [J].
Maillard, Antoine .
EPL, 2021, 133 (02)
[32]   Large and moderate deviations for random walks on nilpotent groups [J].
Baldi, P ;
Caramellino, L .
JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (03) :779-809
[33]   Strong large deviations for arbitrary sequences of random variables [J].
Joutard, Cyrille .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (01) :49-67
[34]   Large deviations of branching processes with immigration in random environment [J].
Dmitruschenkov D.V. ;
Shklyaev A.V. .
Discrete Mathematics and Applications, 2017, 27 (06) :361-376
[35]   ON THE EDGEWORTH EXPANSION AND BOOTSTRAP APPROXIMATION FOR THE COX REGRESSION-MODEL UNDER RANDOM CENSORSHIP [J].
GU, MG .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1992, 20 (04) :399-414
[36]   Conditioned limit theorems for products of random matrices [J].
Ion Grama ;
Émile Le Page ;
Marc Peigné .
Probability Theory and Related Fields, 2017, 168 :601-639
[37]   Conditioned limit theorems for products of random matrices [J].
Grama, Ion ;
Le Page, Emile ;
Peigne, Marc .
PROBABILITY THEORY AND RELATED FIELDS, 2017, 168 (3-4) :601-639
[38]   Limit theorems for iid products of positive matrices [J].
Cuny, Christophe ;
Dedecker, Jerome ;
Merlevede, Florence .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 :1495-1525
[39]   Edgeworth expansion for nearest neighbor-Kernel estimate and random weighting approximation of conditional density [J].
Yu Z. .
Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (2) :167-172
[40]   LARGE EXCURSIONS AND CONDITIONED LAWS FOR RECURSIVE SEQUENCES GENERATED BY RANDOM MATRICES [J].
Collamore, Jeffrey F. ;
Mentemeier, Sebastian .
ANNALS OF PROBABILITY, 2018, 46 (04) :2064-2120