Edgeworth Expansion and Large Deviations for the Coefficients of Products of Positive Random Matrices

被引:0
作者
Xiao, Hui [1 ]
Grama, Ion [2 ]
Liu, Quansheng [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Bretagne Sud, CNRS UMR LMBA 6205, F-56017 Vannes, France
关键词
Products of positive random matrices; Berry-Esseen theorem; Edgeworth expansion; Precise large deviations; Local limit theorem; Spectral gap; SPECTRAL GAP PROPERTIES; RANDOM-WALKS; LIMIT-THEOREMS; ASYMPTOTICS;
D O I
10.1007/s10959-025-01406-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the matrix products Gn:=gn & ctdot;g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n: = g_n \cdots g_1$$\end{document}, where (gn)n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_{n})_{n\geqslant 1}$$\end{document} is a sequence of independent and identically distributed positive random dxd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\times d$$\end{document} matrices. Under the optimal third moment condition, we first establish a Berry-Esseen theorem and an Edgeworth expansion for the (i, j)-th entry Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} of the matrix Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}, where 1 <= i,j <= d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leqslant i, j \leqslant d$$\end{document}. Utilizing the Edgeworth expansion for Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} under the changed probability measure, we then prove precise upper and lower large deviation asymptotics for the entries Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} subject to an exponential moment assumption. As applications, we deduce local limit theorems with large deviations for Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} and establish upper and lower large deviations bounds for the spectral radius rho(Gn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (G_n)$$\end{document} of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}. A byproduct of our approach is the local limit theorem for Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} under the optimal second moment condition. In the proofs we develop a spectral gap theory for both the norm cocycle and the coefficients, which is of independent interest.
引用
收藏
页数:54
相关论文
共 50 条
[21]   Large deviations for the local fluctuations of random walks [J].
Barral, Julien ;
Loiseau, Patrick .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (10) :2272-2302
[22]   Moderate deviations and local limit theorems for the coefficients of random walks on the general linear group [J].
Xiao, Hui ;
Grama, Ion ;
Liu, Quansheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 158 :103-133
[23]   Asymptotics of products of nonnegative random matrices [J].
V. Yu. Protasov .
Functional Analysis and Its Applications, 2013, 47 :138-147
[24]   Gaussian fluctuations for products of random matrices [J].
Gorin, Vadim ;
Sun, Yi .
AMERICAN JOURNAL OF MATHEMATICS, 2022, 144 (02) :287-393
[25]   RANDOM WEIGHTING AND EDGEWORTH EXPANSION FOR THE NONPARAMETRIC TIME-DEPENDENT AUC ESTIMATOR [J].
Chiang, Chin-Tsang ;
Wang, Shao-Hsuan ;
Hung, Hung .
STATISTICA SINICA, 2009, 19 (03) :969-979
[26]   Upper large deviations for Branching Processes in Random Environment with heavy tails [J].
Bansaye, Vincent ;
Boeinghoff, Christian .
ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 :1900-1933
[27]   Moderate deviations principle for products of sums of random variables [J].
Miao Yu ;
Mu JianYong .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (04) :769-784
[28]   Large Tensor Products and Littlewood-Richardson Coefficients [J].
Feigin, Evgeny .
JOURNAL OF LIE THEORY, 2019, 29 (04) :927-940
[29]   Large deviations for the largest eigenvalue of generalized sample covariance matrices [J].
Husson, Jonathan ;
Mc Kenna, Benjamin .
ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
[30]   Large and Moderate Deviations for Random Walks on Nilpotent Groups [J].
Paolo Baldi ;
Lucia Caramellino .
Journal of Theoretical Probability, 1999, 12 :779-809