Edgeworth Expansion and Large Deviations for the Coefficients of Products of Positive Random Matrices

被引:0
作者
Xiao, Hui [1 ]
Grama, Ion [2 ]
Liu, Quansheng [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Bretagne Sud, CNRS UMR LMBA 6205, F-56017 Vannes, France
关键词
Products of positive random matrices; Berry-Esseen theorem; Edgeworth expansion; Precise large deviations; Local limit theorem; Spectral gap; SPECTRAL GAP PROPERTIES; RANDOM-WALKS; LIMIT-THEOREMS; ASYMPTOTICS;
D O I
10.1007/s10959-025-01406-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the matrix products Gn:=gn & ctdot;g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n: = g_n \cdots g_1$$\end{document}, where (gn)n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_{n})_{n\geqslant 1}$$\end{document} is a sequence of independent and identically distributed positive random dxd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\times d$$\end{document} matrices. Under the optimal third moment condition, we first establish a Berry-Esseen theorem and an Edgeworth expansion for the (i, j)-th entry Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} of the matrix Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}, where 1 <= i,j <= d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leqslant i, j \leqslant d$$\end{document}. Utilizing the Edgeworth expansion for Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} under the changed probability measure, we then prove precise upper and lower large deviation asymptotics for the entries Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} subject to an exponential moment assumption. As applications, we deduce local limit theorems with large deviations for Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} and establish upper and lower large deviations bounds for the spectral radius rho(Gn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (G_n)$$\end{document} of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}. A byproduct of our approach is the local limit theorem for Gni,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n<^>{i,j}$$\end{document} under the optimal second moment condition. In the proofs we develop a spectral gap theory for both the norm cocycle and the coefficients, which is of independent interest.
引用
收藏
页数:54
相关论文
共 50 条
[1]   Berry-Esseen bound and precise moderate deviations for products of random matrices [J].
Xiao, Hui ;
Grama, Ion ;
Liu, Quansheng .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (08) :2691-2750
[2]   Precise large deviation asymptotics for products of random matrices [J].
Xiao, Hui ;
Grama, Ion ;
Liu, Quansheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (09) :5213-5242
[3]   Precise large deviation results for products of random matrices [J].
Buraczewski, Dariusz ;
Mentemeier, Sebastian .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03) :1474-1513
[4]   Large deviations of the maximal eigenvalue of random matrices [J].
Borot, G. ;
Eynard, B. ;
Majumdar, S. N. ;
Nadal, C. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[5]   Limit theorems for products of positive random matrices [J].
Hennion, H .
ANNALS OF PROBABILITY, 1997, 25 (04) :1545-1587
[6]   Large deviations for the largest eigenvalue of the sum of two random matrices [J].
Guionnet, Alice ;
Maida, Mylene .
ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
[7]   Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices [J].
Xiao, Hui ;
Grama, Ion ;
Liu, Quansheng .
SCIENCE CHINA-MATHEMATICS, 2024, 67 (03) :627-646
[8]   Conditioned limit theorems for products of positive random matrices [J].
Thi Da Cam Pham .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (01) :67-100
[9]   Large deviations for random walks on free products of finitely generated groups [J].
Corso, Emilio .
ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
[10]   Large deviations for Brownian motion in a random potential [J].
Boivin, Daniel ;
Le, Thi Thu Hien .
ESAIM-PROBABILITY AND STATISTICS, 2020, 24 :374-398