Local Hamilton Type Gradient Estimates for Nonlinear Parabolic Equations on Riemannian Manifolds

被引:0
作者
Li, Xiaosheng [1 ]
Duan, Canfang [1 ]
Jin, Cheng [1 ]
Zeng, Fanqi [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
关键词
Nonlinear equation; Gradient estimate; Liouville theorem; Harnack inequality; FAST DIFFUSION-EQUATIONS; SOUPLET-ZHANG TYPE; POROUS-MEDIUM; LIOUVILLE THEOREMS; ENTROPY FORMULAS; HEAT-EQUATION; INEQUALITIES; U(T);
D O I
10.1007/s44198-024-00248-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a new proof and attain some new local Hamilton type gradient estimates for positive solutions to the parabolic equation ut=Delta Vup+aulogu+bu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{t}=\Delta _{V}u<^>p+au\log u+bu \end{aligned}$$\end{document}on a complete noncompact Riemannian manifold with k-Bakry-& Eacute;mery Ricci curvature bounded from below, where p, a and b are some given constants. As applications, related local Hamilton type gradient estimates, some parabolic type Liouville theorems and Harnack inequalities for porous media type equation and fast diffusion type equation are established. Some known results were generalized by our results.
引用
收藏
页数:32
相关论文
共 32 条
[1]   Li-Yau type and Souplet-Zhang type gradient estimates of a parabolic equation for the V-Laplacian [J].
Chen, Qun ;
Zhao, Guangwen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :744-759
[2]   Existence and Liouville theorems for V-harmonic maps from complete manifolds [J].
Chen, Qun ;
Jost, Juergen ;
Qiu, Hongbing .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 42 (04) :565-584
[3]   Elliptic gradient estimates for a nonlinear equation with Dirichlet boundary condition [J].
Fu, Xuenan ;
Wu, Jia-Yong .
JOURNAL OF GEOMETRY AND PHYSICS, 2023, 191
[4]  
Hamilton R., 1993, Comm. Anal. Geom, V1, P113, DOI [10.4310/CAG.1993.v1.n1.a6, DOI 10.4310/CAG.1993.V1.N1.A6]
[5]   Gradient estimates for positive weak solution to Δpu + auσ=0 on Riemannian manifolds [J].
Huang, Guangyue ;
Guo, Qi ;
Guo, Lujun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 533 (02)
[6]   Hamilton's gradient estimates of porous medium and fast diffusion equations [J].
Huang, Guangyue ;
Ma, Bingqing .
GEOMETRIAE DEDICATA, 2017, 188 (01) :1-16
[7]   Hamilton-Souplet-Zhang's Gradient Estimates for Two Types of Nonlinear Parabolic Equations under the Ricci Flow [J].
Huang, Guangyue ;
Ma, Bingqing .
JOURNAL OF FUNCTION SPACES, 2016, 2016
[8]   Hamilton's gradient estimates and Liouville theorems for porous medium equations [J].
Huang, Guangyue ;
Xu, Ruiwei ;
Zeng, Fanqi .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, :1-7
[9]   GRADIENT ESTIMATES AND ENTROPY FORMULAE OF POROUS MEDIUM AND FAST DIFFUSION EQUATIONS FOR THE WITTEN LAPLACIAN [J].
Huang, Guangyue ;
Li, Haizhong .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (01) :47-78
[10]   Gradient Estimates for the Porous Medium Equations on Riemannian Manifolds [J].
Huang, Guangyue ;
Huang, Zhijie ;
Li, Haizhong .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) :1851-1875