The spectral ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-function for quasi-regular Sturm–Liouville operatorsThe spectral ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-function for quasi-regular...G. Fucci et al.

被引:0
作者
Guglielmo Fucci [1 ]
Mateusz Piorkowski [2 ]
Jonathan Stanfill [3 ]
机构
[1] East Carolina University,Department of Mathematics
[2] Royal Institute of Technology (KTH),Department of Mathematics
[3] The Ohio State University,Department of Mathematics
关键词
-Function; (Quasi-regular) Sturm–Liouville operators; Traces; Zeta regularized functional determinants; (Generalized) Bessel operators; Legendre differential equation; Primary 47A10, 47B10, 47G10; Secondary 34B27, 34L40;
D O I
10.1007/s11005-024-01893-x
中图分类号
学科分类号
摘要
In this work, we analyze the spectral ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-function associated with the self-adjoint extensions, TA,B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{A,B}$$\end{document}, of quasi-regular Sturm–Liouville operators that are bounded from below. By utilizing the Green’s function formalism, we find the characteristic function, which implicitly provides the eigenvalues associated with a given self-adjoint extension TA,B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{A,B}$$\end{document}. The characteristic function is then employed to construct a contour integral representation for the spectral ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-function of TA,B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{A,B}$$\end{document}. By assuming a general form for the asymptotic expansion of the characteristic function, we describe the analytic continuation of the ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-function to a larger region of the complex plane. We also present a method for computing the value of the spectral ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-function of TA,B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{A,B}$$\end{document} at all positive integers. We provide two examples to illustrate the methods developed in the paper: the generalized Bessel and Legendre operators. We show that in the case of the generalized Bessel operator, the spectral ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-function develops a branch point at the origin, while in the case of the Legendre operator it presents, more remarkably, branch points at every nonpositive integer value of s.
引用
收藏
相关论文
empty
未找到相关数据