Double-loop importance sampling for McKean-Vlasov stochastic differential equation

被引:1
作者
Ben Rached, Nadhir [1 ]
Haji-Ali, Abdul-Lateef [2 ]
Pillai, Shyam Mohan Subbiah [3 ]
Tempone, Raul [4 ,5 ]
机构
[1] Univ Leeds, Dept Stat, Sch Math, Leeds, England
[2] Heriot Watt Univ, Sch Math & Comp Sci, Dept Actuarial Math & Stat, Edinburgh, Scotland
[3] Rhein Westfal TH Aachen, Dept Math, Chair Math Uncertainty Quantificat, Aachen, Germany
[4] KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal, Saudi Arabia
[5] Rhein Westfal TH Aachen, Alexander von Humboldt Prof Math Uncertainty Quant, Aachen, Germany
关键词
McKean-Vlasov stochastic differential equation; Importance sampling; Rare events; Stochastic optimal control; Decoupling approach; Double loop Monte Carlo; KURAMOTO MODEL; SYNCHRONIZATION; APPROXIMATION; MULTILEVEL; SIMULATION; REDUCTION; SDES;
D O I
10.1007/s11222-024-10497-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates Monte Carlo (MC) methods to estimate probabilities of rare events associated with the solution to the d-dimensional McKean-Vlasov stochastic differential equation (MV-SDE). MV-SDEs are usually approximated using a stochastic interacting P-particle system, which is a set of P coupled d-dimensional stochastic differential equations (SDEs). Importance sampling (IS) is a common technique for reducing high relative variance of MC estimators of rare-event probabilities. We first derive a zero-variance IS change of measure for the quantity of interest by using stochastic optimal control theory. However, when this change of measure is applied to stochastic particle systems, it yields a Pxd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \times d$$\end{document}-dimensional partial differential control equation (PDE), which is computationally expensive to solve. To address this issue, we use the decoupling approach introduced in (dos Reis et al. 2023), generating a d-dimensional control PDE for a zero-variance estimator of the decoupled SDE. Based on this approach, we develop a computationally efficient double loop MC (DLMC) estimator. We conduct a comprehensive numerical error and work analysis of the DLMC estimator. As a result, we show optimal complexity of OTOLr-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}\left( \textrm{TOL}_{\textrm{r}}<^>{-4}\right) $$\end{document} with a significantly reduced constant to achieve a prescribed relative error tolerance TOLr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{TOL}_{\textrm{r}}$$\end{document}. Subsequently, we propose an adaptive DLMC method combined with IS to numerically estimate rare-event probabilities, substantially reducing relative variance and computational runtimes required to achieve a given TOLr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{TOL}_{\textrm{r}}$$\end{document} compared with standard MC estimators in the absence of IS. Numerical experiments are performed on the Kuramoto model from statistical physics.
引用
收藏
页数:25
相关论文
共 47 条
  • [1] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [2] State-dependent importance sampling for estimating expectations of functionals of sums of independent random variables
    Ben Amar, Eya
    Ben Rached, Nadhir
    Haji-Ali, Abdul-Lateef
    Tempone, Raul
    [J]. STATISTICS AND COMPUTING, 2023, 33 (02)
  • [3] Learning-based importance sampling via stochastic optimal control for stochastic reaction networks
    Ben Hammouda, Chiheb
    Ben Rached, Nadhir
    Tempone, Raul
    Wiechert, Sophia
    [J]. STATISTICS AND COMPUTING, 2023, 33 (03)
  • [4] Unified Importance Sampling Schemes for Efficient Simulation of Outage Capacity Over Generalized Fading Channels
    Ben Rached, Nadhir
    Kammoun, Abla
    Alouini, Mohamed-Slim
    Tempone, Raul
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 376 - 388
  • [5] A stochastic particle method for the McKean-Vlasov and the Burgers equation
    Bossy, M
    Talay, D
    [J]. MATHEMATICS OF COMPUTATION, 1997, 66 (217) : 157 - 192
  • [6] Bossy M, 1996, ANN APPL PROBAB, V6, P818
  • [7] Buckdahn R., 2017, Mean-field stochastic differential equations and associated PDEs
  • [8] Stochastic Evolution Equations in Portfolio Credit Modelling
    Bush, N.
    Hambly, B. M.
    Haworth, H.
    Jin, L.
    Reisinger, C.
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 627 - 664
  • [9] CUBATURE ON WIENER SPACE FOR MCKEAN-VLASOV SDES WITH SMOOTH SCALAR INTERACTION
    Crisan, Dan
    McMurray, Eamon
    [J]. ANNALS OF APPLIED PROBABILITY, 2019, 29 (01) : 130 - 177
  • [10] Smoothing properties of McKean-Vlasov SDEs
    Crisan, Dan
    McMurray, Eamon
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 171 (1-2) : 97 - 148