Securing the collective intelligence: a comprehensive review of federated learning security attacks and defensive strategies

被引:0
|
作者
Kaushal, Vishal [1 ]
Sharma, Sangeeta [1 ]
机构
[1] Natl Inst Technol, Comp Sci & Engn Dept, Hamirpur 177005, Himachal Prades, India
关键词
Centralized learning; Federated learning; Threats; Defense; Aggregation algorithm; POISONING ATTACKS; PRIVACY; CHALLENGES;
D O I
10.1007/s10115-025-02339-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning holds significant potential as a collaborative machine learning technique, allowing multiple entities to work together on a collective model without the need to exchange data. However, due to the distribution of data across multiple devices, federated learning becomes susceptible to a range of attacks. This paper provides an extensive examination of the different forms of attacks that can target federated learning systems. The attacks discussed include data poisoning attacks, model poisoning attacks, backdoor attacks, Byzantine attacks, membership inference attacks, model inversion attacks, etc. Each attack is examined in detail, with examples from the literature provided. Additionally, potential countermeasures to defend against these attacks are explored. The objective of this review is to provide an in-depth survey of the current landscape in federated learning attacks and corresponding defense mechanisms.
引用
收藏
页码:3099 / 3137
页数:39
相关论文
共 50 条
  • [1] Securing federated learning with blockchain: a systematic literature review
    Qammar, Attia
    Karim, Ahmad
    Ning, Huansheng
    Ding, Jianguo
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (05) : 3951 - 3985
  • [2] A Survey on Securing Federated Learning: Analysis of Applications, Attacks, Challenges, and Trends
    Neto, Helio N. Cunha
    Hribar, Jernej
    Dusparic, Ivana
    Mattos, Diogo Menezes Ferrazani
    Fernandes, Natalia C. C.
    IEEE ACCESS, 2023, 11 : 41928 - 41953
  • [3] Securing federated learning with blockchain: a systematic literature review
    Attia Qammar
    Ahmad Karim
    Huansheng Ning
    Jianguo Ding
    Artificial Intelligence Review, 2023, 56 : 3951 - 3985
  • [4] A review on client-server attacks and defenses in federated learning
    Sharma, Anee
    Marchang, Ningrinla
    COMPUTERS & SECURITY, 2024, 140
  • [5] Unleashing the prospective of blockchain-federated learning fusion for IoT security: A comprehensive review
    Gupta, Mansi
    Kumar, Mohit
    Dhir, Renu
    COMPUTER SCIENCE REVIEW, 2024, 54
  • [6] FedTIU: Securing Virtualized PLCs Against DDoS Attacks Using a Federated Learning Enabled Threat Intelligence Unit
    Verma, Priyanka
    De Leon, Miguel Ponce
    Breslin, John G.
    O'Shea, Donna
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP, 2023, : 233 - 236
  • [7] A comprehensive analysis of model poisoning attacks in federated learning for autonomous vehicles: A benchmark study
    Almutairi, Suzan
    Barnawi, Ahmed
    RESULTS IN ENGINEERING, 2024, 24
  • [8] Anomaly detection and defense techniques in federated learning: a comprehensive review
    Zhang, Chang
    Yang, Shunkun
    Mao, Lingfeng
    Ning, Huansheng
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (06)
  • [9] Blockchain-Based Federated Learning for Securing Internet of Things: A Comprehensive Survey
    Issa, Wael
    Moustafa, Nour
    Turnbull, Benjamin
    Sohrabi, Nasrin
    Tari, Zahir
    ACM COMPUTING SURVEYS, 2023, 55 (09)
  • [10] Securing NextG Systems against Poisoning Attacks on Federated Learning: A Game-Theoretic Solution
    Sagduyu, Yalin E.
    Erpek, Tugba
    Shi, Yi
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,