Variational methods for a p(x,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x,\cdot )$$\end{document}-fractional bi-nonlocal problem of elliptic typeVariational methods for a p(x,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x,\cdot )$$\end{document}-fractional bi-nonlocal...E. Azroul et al.

被引:0
|
作者
E. Azroul [1 ]
N. Kamali [1 ]
M. A. Ragusa [2 ]
M. Shimi [3 ]
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory of Mathematical Analysis and Applications, Faculty of Sciences Dhar El Mahraz
[2] University of Catania,Department of Mathematics
[3] Laboratory of Mathematical Analysis and Applications,ENS of Fez, Department of Mathematics and Computer Science
[4] Sidi Mohamed Ben Abdellah University,undefined
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2025年 / 74卷 / 1期
关键词
Fractional ; -Laplacian operator; Variational methods; -Kirchhoff type problem; Bi-nonlocal problem; 35R11; 47G20; 35S15; 35A15;
D O I
10.1007/s12215-024-01156-7
中图分类号
学科分类号
摘要
In this paper, we establish the existence of weak solutions for a class of bi-nonlocal Kirchhoff-type problems incorporating the fractional p(x,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x,\cdot )$$\end{document}-Laplacian operator through variational methods. We investigate three distinct classes of Kirchhoff functions, leveraging the mountain pass theorem and the Ekeland’s variational principle to achieve our results.
引用
收藏
相关论文
共 50 条