Ramsey Numbers of Complete Bipartite Graphs

被引:0
作者
Liu, Meng [1 ]
Du, Bangwei [1 ]
机构
[1] Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
关键词
Ramsey number; Bipartite graph; Asymptotic bound;
D O I
10.1007/s00373-025-02892-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha>0 be a constant and let m >= 1 be an integer. In this short note, we shall show that R(K-m,K-alpha n,K-m,K-n)=((alpha(1/m)+1)(m)+o(1))n as n ->infinity
引用
收藏
页数:4
相关论文
共 8 条
[1]  
Burr S. A., 1973, UTILITAS MATHEMATICA, V4, P217
[2]   MULTICOLOR RAMSEY NUMBERS FOR COMPLETE BIPARTITE GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) :164-169
[3]   Off-diagonal book Ramsey numbers [J].
Conlon, David ;
Fox, Jacob ;
Wigderson, Yuval .
COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (03) :516-545
[4]   A construction for Ramsey numbers for Km, n [J].
Dung, Lin ;
Li, Yusheng .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) :1667-1670
[5]  
FUREDI Z, 1996, COMB PROBAB COMPUT, V5, P29
[6]  
Janson S., 2000, WIL INT S D, Vfirst
[7]   Ramsey functions involving Km,n with n large [J].
Li, YS ;
Tang, XQ ;
Zang, WN .
DISCRETE MATHEMATICS, 2005, 300 (1-3) :120-128
[8]   Off-diagonal and asymptotic results on the Ramsey number r(K2,m,K2,n) [J].
Lortz, R ;
Mengersen, I .
JOURNAL OF GRAPH THEORY, 2003, 43 (04) :252-268