Quantum computing and quantum-inspired techniques for feature subset selection: a review

被引:2
作者
Mandal, Ashis Kumar [1 ,2 ]
Chakraborty, Basabi [3 ,4 ]
机构
[1] Univ Saskatchewan, Dept Comp Sci, Saskatoon, SK S7N 5C9, Canada
[2] Hajee Mohammad Danesh Sci & Technol Univ, Dept Comp Sci & Engn, Dinajpur 5200, Bangladesh
[3] Madanapalle Inst Technol & Sci MITS, Sch Comp Sci, Madanapalle, AP, India
[4] Iwate Prefectural Univ, Reg Res Cooperat Ctr, Takizawa, Iwate 0200693, Japan
关键词
Quantum computing; Feature subset selection; Quantum-inspired metaheuristic; Quantum annealing; Quantum Approximate Optimization Algorithm; ALGORITHM; OPTIMIZATION; CLASSIFICATION; DIMENSIONALITY; HEURISTICS; ANNEALER;
D O I
10.1007/s10115-024-02282-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature subset selection is essential for identifying relevant and non-redundant features, which enhances classification accuracy and simplifies machine learning models. Given the computational difficulties of determining optimal feature subsets, heuristic and metaheuristic algorithms have been widely used. Recently, the rise of quantum computing has led to the exploration of quantum-inspired metaheuristics and quantum-based approaches for this task. Although various studies have explored quantum-inspired and quantum-based approaches for feature subset selection, a comprehensive review that critically examines their significance, limitations, underlying mechanisms, and future directions remains lacking in the literature. This paper addresses this gap by presenting the first in-depth survey of these approaches. We systematically selected and analyzed relevant studies from prominent research databases, providing a detailed evaluation of quantum-inspired metaheuristics and quantum computing paradigms applied to feature subset selection. Our findings indicate that quantum-inspired metaheuristic approaches often deliver superior performance compared to traditional metaheuristic methods for feature subset selection. Nevertheless, their reliance on classical computing limits their ability to fully realize the advantages offered by quantum computing. The quantum-based feature subset selection methods, on the other hand, show considerable promise but are frequently constrained by the current limitations of quantum hardware, making large-scale feature subset selection challenging. Given the rapid evolution of quantum computing, research on both quantum-inspired and quantum-based feature subset selection remains insufficient to draw definitive conclusions. We are optimistic that this review will provide a foundation for future advancements in feature subset selection as quantum computing resources become more accessible.
引用
收藏
页码:2019 / 2061
页数:43
相关论文
共 136 条
[1]  
Abdel-Basset M., 2018, Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, P185, DOI [10.1016/B978-0-12-813314-9.00010-4, DOI 10.1016/B978-0-12-813314-9.00010-4, DOI 10.1016/B978-0-12-813314-9.00010-4.Z.B.T.-C.I]
[2]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[3]   Feature selection method based on quantum inspired genetic algorithm for Arabic signature verification [J].
Abdulhussien, Ansam A. ;
Nasrudin, Mohammad F. ;
Darwish, Saad M. ;
Alyasseri, Zaid Abdi Alkareem .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (03) :141-156
[4]   Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019) [J].
Agrawal, Prachi ;
Abutarboush, Hattan F. ;
Ganesh, Talari ;
Mohamed, Ali Wagdy .
IEEE ACCESS, 2021, 9 :26766-26791
[5]   Quantum based Whale Optimization Algorithm for wrapper feature selection [J].
Agrawal, R. K. ;
Kaur, Baljeet ;
Sharma, Surbhi .
APPLIED SOFT COMPUTING, 2020, 89
[6]   Leukocytes Classification for Leukemia Detection Using Quantum Inspired Deep Feature Selection [J].
Ahmad, Riaz ;
Awais, Muhammad ;
Kausar, Nabeela ;
Tariq, Usman ;
Cha, Jae-Hyuk ;
Balili, Jamel .
CANCERS, 2023, 15 (09)
[7]   Multiclass feature selection with metaheuristic optimization algorithms: a review [J].
Akinola, Olatunji O. ;
Ezugwu, Absalom E. ;
Agushaka, Jeffrey O. ;
Abu Zitar, Raed ;
Abualigah, Latih .
NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22) :19751-19790
[8]   Quantum Computer Systems for Scientific Discovery [J].
Alexeev, Yuri ;
Bacon, Dave ;
Brown, Kenneth R. ;
Calderbank, Robert ;
Carr, Lincoln D. ;
Chong, Frederic T. ;
DeMarco, Brian ;
Englund, Dirk ;
Farhi, Edward ;
Fefferman, Bill ;
Gorshkov, Alexey, V ;
Houck, Andrew ;
Kim, Jungsang ;
Kimmel, Shelby ;
Lange, Michael ;
Lloyd, Seth ;
Lukin, Mikhail D. ;
Maslov, Dmitri ;
Maunz, Peter ;
Monroe, Christopher ;
Preskill, John ;
Roetteler, Martin ;
Savage, Martin J. ;
Thompson, Jeff .
PRX QUANTUM, 2021, 2 (01)
[9]   Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation [J].
Alhaj, Taqwa Ahmed ;
Siraj, Maheyzah Md ;
Zainal, Anazida ;
Elshoush, Huwaida Tagelsir ;
Elhaj, Fatin .
PLOS ONE, 2016, 11 (11)
[10]   A Feature Selection Model for Network Intrusion Detection System Based on PSO, GWO, FFA and GA Algorithms [J].
Almomani, Omar .
SYMMETRY-BASEL, 2020, 12 (06) :1-20