Brain Tumor Classification Using an Ensemble of Deep Learning Techniques

被引:0
|
作者
Patro, S. Gopal Krishna [1 ]
Govil, Nikhil [2 ]
Saxena, Surabhi [3 ]
Kishore Mishra, Brojo [4 ]
Taha Zamani, Abu [5 ]
Ben Miled, Achraf [5 ]
Parveen, Nikhat [6 ]
Elshafie, Hashim [7 ]
Hamdan, Mosab [8 ]
机构
[1] Woxsen Univ, Sch Technol, Hyderabad 502345, India
[2] GLA Univ, Dept Comp Engn & Applicat CEA, Mathura 281406, India
[3] CHRIST Univ, Dept Comp Sci, Bengaluru 560074, India
[4] NIST Univ, Dept Comp Sci & Engn, Berhampur, India
[5] Northern Border Univ, Dept Comp Sci, Ar Ar 91431, Saudi Arabia
[6] Koneru Lakshmaiah Educ Fdn, Dept Comp Sci & Engn, Guntur 522302, India
[7] King Khalid Univ, Coll Comp Sci, Dept Comp Engn, Abha 61421, Saudi Arabia
[8] South East Technol Univ, Walton Inst Informat & Commun Syst Sci, Waterford X91 HE36, Ireland
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Brain modeling; Accuracy; Magnetic resonance imaging; Feature extraction; Predictive models; Data models; Computer science; Classification algorithms; Transfer learning; Medical diagnostic imaging; Brain tumor; deep learning; ensemble; glioma; meningioma; MRI; pituitary;
D O I
10.1109/ACCESS.2024.3485895
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The article reflects on the classification of brain tumors where several deep learning (DL) approaches are used. Both primary and secondary brain tumors reduce the patient's quality of life, and therefore, any sign of the tumor should be treated immediately for adequate response and survival rates. DL, especially in the diagnosis of brain tumors using MRI and CT scans, has applied its abilities to identify excellent patterns. The proposed ensemble framework begins with the image preprocessing of the brain MRI to enhance the quality of images. These images are then utilized to train seven DL models and all of these models recognize the features related to the tumor. There are four models which are General, Glioma, Meningioma, and Pituitary tumors or No Tumor model, which helps in reaching a joint profitable prediction and concentrating solely on the strength of the estimation and outcome. This is a significant improvement over all the individual models, attaining a 99. 43% accuracy. The data used in this research was gotten from Kaggle website and comprised of 7023 images belonging to four classes. Future work will focus on increasing the dataset size, investigating additional DL architectures, and enhancing real-time detection to improve the accuracy of diagnostic scans and their overall relevance to clinical practice.
引用
收藏
页码:162094 / 162106
页数:13
相关论文
共 50 条
  • [41] Performance optimisation of deep learning models using majority voting algorithm for brain tumour classification
    Tandel, Gopal S.
    Tiwari, Ashish
    Kakde, O. G.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [42] Brain Tumor Classification Using VGG-16 and MobileNetV2 Deep Learning Techniques on Magnetic Resonance Images (MRI)
    Saini, Rashmi
    Semwal, Prabhakar
    Jaware, Tushar Hrishikesh
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, ICSOFTCOMP 2022, 2023, 1788 : 300 - 313
  • [43] Detection and Classification of Brain Tumor in MRI Images using Deep Convolutional Network
    Bhanothu, Yakub
    Kamalakannan, Anandhanarayanan
    Rajamanickam, Govindaraj
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 248 - 252
  • [44] Musical Genre Classification Using Advanced Audio Analysis and Deep Learning Techniques
    Ahmed, Mumtahina
    Rozario, Uland
    Kabir, Md Mohshin
    Aung, Zeyar
    Shin, Junpil
    Mridha, M. F.
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2024, 5 : 457 - 467
  • [45] Automated Brain Tumor Segmentation and Classification in MRI Using YOLO-Based Deep Learning
    Almufareh, Maram Fahaad
    Imran, Muhammad
    Khan, Abdullah
    Humayun, Mamoona
    Asim, Muhammad
    IEEE ACCESS, 2024, 12 : 16189 - 16207
  • [46] Multi-Class Brain Tumor Grades Classification Using a Deep Learning-Based Majority Voting Algorithm and Its Validation Using Explainable-AI
    Tandel, Gopal Singh
    Tiwari, Ashish
    Kakde, Omprakash G.
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
  • [47] Speech Emotion Recognition Using Deep Neural Networks, Transfer Learning, and Ensemble Classification Techniques
    Mihalache, Serban
    Burileanu, Dragos
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2023, 26 (3-4): : 375 - 387
  • [48] The advancement of ensemble deep learning architecture for the detection and classification of brain tumours with MRI images
    Gupta, Ashish
    Gupta, Deepak
    Pathak, Manisha
    Wagh, Sharmila K.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2024, 45 (01) : 27 - 44
  • [49] Efficient framework for brain tumor detection using different deep learning techniques
    Taher, Fatma
    Shoaib, Mohamed R.
    Emara, Heba M.
    Abdelwahab, Khaled M.
    Abd El-Samie, Fathi E.
    Haweel, Mohammad T.
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [50] Automated evaluation and parameter estimation of brain tumor using deep learning techniques
    Vijayakumari, B.
    Kiruthiga, N.
    Bushkala, C.P.
    Neural Computing and Applications, 2024, 36 (33) : 20751 - 20767