Maximal, Littlewood-Paley, Variation, and Oscillation Operators in the Rational Dunkl Setting

被引:0
作者
Almeida, V. [1 ]
Betancor, J. J. [1 ]
Farina, J. C. [1 ]
Rodriguez-Mesa, L. [1 ]
机构
[1] Univ La Laguna, Fac Ciencias, Dept Anal Matemat, Campus de Anchieta,Avda Astrofisico Francisco Sanc, Santa Cruz De Tenerife 38721, Spain
关键词
Dunkl operator; Maximal operator; Littlewood-Paley function; Variation; Oscillation operators; VARIATION INEQUALITIES; SINGULAR-INTEGRALS; RIESZ TRANSFORMS; HARDY-SPACES; P-VARIATION; POLYNOMIALS;
D O I
10.1007/s00041-024-10117-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study harmonic analysis operators in Dunkl settings associated with finite reflection groups on Euclidean spaces. We consider maximal operators, Littlewood-Paley functions, sigma-variation, and oscillation operators involving time derivatives of the heat semigroup generated by Dunkl operators. We establish the boundedness properties of these operators in L-p (R-d,omega K), 1 <= p < infinity, Hardy spaces, BMO, and BLO-type spaces in the Dunkl setting. The study of harmonic analysis operators associated to reflection groups need different strategies from the ones used in the Euclidean case since the integral kernels of the operators admit estimations involving two different metrics, namely, the Euclidean and the orbit metrics.
引用
收藏
页数:41
相关论文
共 65 条
  • [1] SINGULAR-INTEGRALS AND APPROXIMATE IDENTITIES ON SPACES OF HOMOGENEOUS TYPE
    AIMAR, H
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (01) : 135 - 153
  • [2] Variation in probability, ergodic theory and analysis
    Akcoglu, MA
    Jones, RL
    Schwartz, PO
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1998, 42 (01) : 154 - 177
  • [3] Amri B., 2012, Ann. Math. Blaise Pascal, V19, P247, DOI 10.5802/ambp.312
  • [4] Dunkl-Schrodinger Operators
    Amri, Bechir
    Hammi, Amel
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 1033 - 1058
  • [5] Anker JP, 2019, J FOURIER ANAL APPL, V25, P2356, DOI 10.1007/s00041-019-09666-0
  • [6] Anker JP, 2015, CONSTR APPROX, V42, P93, DOI 10.1007/s00365-014-9254-2
  • [7] [Anonymous], 1971, Lect. Notes Math. 242, Etude de certaines integrales singulieres
  • [8] Variation bounds for spherical averages
    Beltran, David
    Oberlin, Richard
    Roncal, Luz
    Seeger, Andreas
    Stovall, Betsy
    [J]. MATHEMATISCHE ANNALEN, 2022, 382 (1-2) : 459 - 512
  • [9] ANOTHER CHARACTERIZATION OF BLO
    BENNETT, C
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (04) : 552 - 556
  • [10] Variation inequalities for Riesz transforms and Poisson semigroups associated with Laguerre polynomial expansions
    Betancor, J. J.
    De Leon-Contreras, M.
    [J]. ANALYSIS AND APPLICATIONS, 2024, 22 (01) : 1 - 56