Prediction of microvascular obstruction from angio-based microvascular resistance and available clinical data in percutaneous coronary intervention: an explainable machine learning model

被引:2
作者
Zhang, Zhe [1 ]
Dai, Yang [1 ,4 ]
Xue, Peng [2 ]
Bao, Xue [2 ]
Bai, Xinbo [3 ]
Qiao, Shiyang [3 ]
Gao, Yuan [2 ]
Guo, Xuemei [3 ]
Xue, Yanan [3 ]
Dai, Qing [2 ,3 ]
Xu, Biao [1 ,2 ]
Kang, Lina [1 ,2 ]
机构
[1] Nanjing Med Univ, Nanjing Drum Tower Hosp, Nanjing Drum Tower Hosp Clin Coll, Dept Cardiol, Nanjing 210008, Peoples R China
[2] Nanjing Univ, Nanjing Drum Tower Hosp, Affiliated Hosp, Cardiovasc Med Ctr,Med Sch, Nanjing 210008, Peoples R China
[3] Nanjing Univ, Affiliated Hosp, Nanjing Drum Tower Hosp, Med Sch,Dept Cardiol, Nanjing, Peoples R China
[4] Nanjing Med Univ, Nanjing Drum Tower Hosp, Nanjing Drum Tower Hosp Clin Coll, Dept Geriatr, Nanjing, Peoples R China
关键词
ST-segment elevation myocardial infarction; Angio-based microvascular resistance; Cardiac magnetic resonance; Microvascular obstruction; Machine learning; ELEVATION MYOCARDIAL-INFARCTION; DYSFUNCTION; ACCURACY; OUTCOMES;
D O I
10.1038/s41598-025-87828-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Angio-based microvascular resistance (AMR) as a potential alternative to the index of microcirculatory resistance (IMR) and its relationship with microvascular obstruction (MVO) and other cardiac magnetic resonance (CMR) parameters still lacks comprehensive validation. This study aimed to validate the correlation between AMR and CMR-derived parameters and to construct an interpretable machine learning (ML) model, incorporating AMR and clinical data, to forecast MVO in ST-segment elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (PPCI). We enrolled 452 STEMI patients from Nanjing Drum Tower Hospital between 2018 and 2022, who received both PPCI and CMR. After PPCI, AMR measurements and CMR-derived parameters were recorded, and clinical data were gathered. The ML workflow comprised feature selection using the Boruta algorithm, model construction with seven classifiers, hyperparameter optimization via ten-fold cross-validation, model comparison based on the area under the curve (AUC), and a Shapley additive explanations (SHAP) analysis to analyze the significance of different features. 32.29% of patients showed inconsistency between AMR and MVO, but we successfully constructed a predictive model for MVO. Among the classifiers, Extreme gradient boosting (XGBoost) post hyperparameter optimization displayed superior performance, achieving an AUC of 0.911 and 0.846 in the training and validation sets, respectively. SHAP analysis identified AMR as a pivotal predictor of MVO. Although we observed the inconsistency between AMR and MVO but the ML-based construction of MVO prediction model is feasible, which brings the possibility of timely prediction of patients with MVO and timely imposition of interventions during PPCI.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Prognostic value of structural and functional coronary microvascular dysfunction in patients with non-obstructive coronary artery disease; from the multicentre international ILIAS registry [J].
Boerhout, Coen K. M. ;
de Waard, Guus A. ;
Lee, Joo Myung ;
Mejia-Renteria, Hernan ;
Lee, Seung Hun ;
Jung, Ji-Hyun ;
Hoshino, Masahiro ;
Echavarria-Pinto, Mauro ;
Meuwissen, Martijn ;
Matsuo, Hitoshi ;
Madera-Cambero, Maribel ;
Eftekhari, Ashkan ;
Effat, Mohamed A. ;
Murai, Tadashi ;
Marques, Koen ;
Appelman, Yolande ;
Doh, Joon-Hyung ;
Christiansen, Evald Hoj ;
Banerjee, Rupak ;
Nam, Chang-Wook ;
Niccoli, Giampaolo ;
Nakayama, Masafumi ;
Tanaka, Nobuhiro ;
Shin, Eun-Seok ;
Beijk, Marcel A. M. ;
Knaapen, Paul ;
Escaned, Javier ;
Kakuta, Tsunekazu ;
Koo, Bon -Kwon ;
Piek, Jan J. ;
van de Hoef, Tim P. .
EUROINTERVENTION, 2022, 18 (09) :719-+
[2]   Acute Microvascular Impairment Post-Reperfused STEMI Is Reversible and Has Additional Clinical Predictive Value [J].
Borlotti, Alessandra ;
Jerosch-Herold, Michael ;
Liu, Dan ;
Viliani, Dafne ;
Bracco, Alessia ;
Alkhalil, Mohammad ;
De Maria, Giovanni Luigi ;
Channon, Keith M. ;
Banning, Adrian P. ;
Choudhury, Robin P. ;
Neubauer, Stefan ;
Kharbanda, Rajesh K. ;
Dall'Armellina, Erica .
JACC-CARDIOVASCULAR IMAGING, 2019, 12 (09) :1783-1793
[3]   Cardiovascular Magnetic Resonance in Acute ST-Segment-Elevation Myocardial Infarction Recent Advances, Controversies, and Future Directions [J].
Bulluck, Heerajnarain ;
Dharmakumar, Rohan ;
Arai, Andrew E. ;
Berry, Colin ;
Hausenloy, Derek J. .
CIRCULATION, 2018, 137 (18) :1949-1964
[4]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[5]   Impact of Microvascular Obstruction on the Assessment of Coronary Flow Reserve, Index of Microcirculatory Resistance, and Fractional Flow Reserve After ST-Segment Elevation Myocardial Infarction (vol 64, pg 1894, 2014) [J].
Cuculi, F. ;
De Maria, G. L. ;
Meier, P. ;
Dall'Armellina, E. ;
de Caterina, A. R. ;
Channon, K. M. ;
Prendergast, B. D. ;
Choudhury, Robin P. ;
Forfar, J. C. ;
Kharbanda, R. K. ;
Banning, A. P. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (08) :866-866
[6]   Index of Microcirculatory Resistance as a Tool to Characterize Microvascular Obstruction and to Predict Infarct Size Regression in Patients With STEMI Undergoing Primary PCI [J].
De Maria, Giovanni Luigi ;
Alkhalil, Mohammad ;
Wolfrum, Mathias ;
Fahrni, Gregor ;
Borlotti, Alessandra ;
Gaughran, Lisa ;
Dawkins, Sam ;
Langrish, Jeremy P. ;
Lucking, Andrew J. ;
Choudhury, Robin P. ;
Porto, Italo ;
Crea, Filippo ;
Dall'Armellina, Erica ;
Channon, Keith M. ;
Kharbanda, Rajesh K. ;
Banning, Adrian P. .
JACC-CARDIOVASCULAR IMAGING, 2019, 12 (05) :837-848
[7]   Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials [J].
de Waha, Suzanne ;
Patel, Manesh R. ;
Granger, Christopher B. ;
Ohman, E. Magnus ;
Maehara, Akiko ;
Eitel, Ingo ;
Ben-Yehuda, Ori ;
Jenkins, Paul ;
Thiele, Holger ;
Stone, Gregg W. .
EUROPEAN HEART JOURNAL, 2017, 38 (47) :3502-+
[8]   Evaluation of variable selection methods for random forests and omics data sets [J].
Degenhardt, Frauke ;
Seifert, Stephan ;
Szymczak, Silke .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (02) :492-503
[9]   Identification of High-Risk Patients After ST-Segment-Elevation Myocardial Infarction Comparison Between Angiographic and Magnetic Resonance Parameters [J].
Durante, Alessandro ;
Laricchia, Alessandra ;
Benedetti, Giulia ;
Esposito, Antonio ;
Margonato, Alberto ;
Rimoldi, Ornella ;
De Cobelli, Francesco ;
Colombo, Antonio ;
Camici, Paolo G. .
CIRCULATION-CARDIOVASCULAR IMAGING, 2017, 10 (06)
[10]  
Echavarría-Pinto M, 2017, EUROINTERVENTION, V13, P666, DOI [10.4244/EIJ-D-16-00525, 10.4244/EIJ-D-17-00503]