Content Caching-Assisted Vehicular Edge Computing Using Multi-Agent Graph Attention Reinforcement Learning

被引:0
作者
Shen, Jinjin [1 ]
Lin, Yan [1 ]
Zhang, Yijin [1 ]
Zhang, Weibin [1 ]
Shu, Feng [2 ]
Li, Jun [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
[2] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[3] Southeast Univ, Sch Informat Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Vehicle dynamics; Network topology; Edge computing; Computational modeling; Reinforcement learning; Decision making; Topology; Indexes; Simulation; Roads; Edge caching; graph attention reinforcement learning; multi-agent; vehicular edge computing;
D O I
10.1109/TVT.2024.3479290
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to avoid repeated task offloading and realize the reuse of popular task computing results, we construct a novel content caching-assisted vehicular edge computing (VEC) framework. In the face of irregular network topology and unknown environmental dynamics, we further propose a multi-agent graph attention reinforcement learning (MGARL) based edge caching scheme, which utilizes the graph attention convolution kernel to integrate the neighboring nodes' features of each agent and further enhance the cooperation among agents. Our simulation results show that our proposed scheme is capable of improving the utilization of caching resources while reducing the long-term task computing latency compared to the baselines.
引用
收藏
页码:3509 / 3514
页数:6
相关论文
共 17 条
  • [1] The Promise and Challenges of Computation Deduplication and Reuse at the Network Edge
    Al Azad, Md Washik
    Mastorakis, Spyridon
    [J]. IEEE WIRELESS COMMUNICATIONS, 2022, 29 (06) : 112 - 118
  • [2] Computation offloading and content caching and delivery in Vehicular Edge Network: A survey
    Dziyauddin, Rudzidatul Akmam
    Niyato, Dusit
    Nguyen Cong Luong
    Atan, Ahmad Ariff Aizuddin Mohd
    Izhar, Mohd Azri Mohd
    Azmi, Marwan Hadri
    Daud, Salwani Mohd
    [J]. COMPUTER NETWORKS, 2021, 197
  • [3] Deep-Reinforcement-Learning-Based Distributed Computation Offloading in Vehicular Edge Computing Networks
    Geng, Liwei
    Zhao, Hongbo
    Wang, Jiayue
    Kaushik, Aryan
    Yuan, Shuai
    Feng, Wenquan
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) : 12416 - 12433
  • [4] Jiang J., 2020, P INT C LEARN REPR, P1
  • [5] Kai Jiang, 2021, IEEE Communications Standards Magazine, V5, P68, DOI 10.1109/MCOMSTD.001.2000045
  • [6] Privacy-Preserving Joint Edge Association and Power Optimization for the Internet of Vehicles via Federated Multi-Agent Reinforcement Learning
    Lin, Yan
    Bao, Jinming
    Zhang, Yijin
    Li, Jun
    Shu, Feng
    Hanzo, Lajos
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (06) : 8256 - 8261
  • [7] Popularity-Aware Online Task Offloading for Heterogeneous Vehicular Edge Computing Using Contextual Clustering of Bandits
    Lin, Yan
    Zhang, Yijin
    Li, Jun
    Shu, Feng
    Li, Chunguo
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (07) : 5422 - 5433
  • [8] Heterogeneous User-Centric Cluster Migration Improves the Connectivity-Handover Trade-Off in Vehicular Networks
    Lin, Yan
    Zhang, Zhengming
    Huang, Yongming
    Li, Jun
    Shu, Feng
    Hanzo, Lajos
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 16027 - 16043
  • [9] Joint Computation Offloading and Data Caching in Multi-Access Edge Computing Enabled Internet of Vehicles
    Liu, Liqing
    Yuan, Xiaoming
    Zhang, Ning
    Chen, Decheng
    Yu, Keping
    Taherkordi, Amir
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (11) : 14939 - 14954
  • [10] Deep Reinforcement Learning for Cooperative Content Caching in Vehicular Edge Computing and Networks
    Qiao, Guanhua
    Leng, Supeng
    Maharjan, Sabita
    Zhang, Yan
    Ansari, Nirwan
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (01): : 247 - 257