Emissivity and Reflectivity Measurements for Passive Radiative Cooling Technologies

被引:0
作者
Adibekyan, A. [1 ]
Schumacher, J. [2 ]
Pattelli, L. [3 ]
Manara, J. [4 ]
Meric, S. [5 ]
Bazkir, O. [5 ]
Cucchi, C. [6 ]
Sprengard, C. [6 ]
Perez, G. [7 ]
Campos, J. [8 ]
Hameury, J. [9 ]
Andersson, A. [10 ]
Clausen, S. [11 ]
Belotti, C. [12 ]
Efthymiou, S. [13 ]
Assimakopoulos, M. -n. [13 ]
Papadaki, D. [13 ]
Manoocheri, F. [14 ]
Llados, A. [15 ]
Jaramillo-Fernandez, J. [15 ,20 ]
Gionfini, T. [16 ]
Ortisi, M. [16 ]
Peter, A. [17 ]
Kleinbub, M. [18 ]
Bante, J. [2 ]
Donath, L. [2 ]
Herzog, H. [19 ]
Monte, C. [1 ]
机构
[1] Phys Tech Bundesanstalt, Abbestr 2-12, D-10587 Berlin, Germany
[2] Phys Tech Bundesanstalt, Braunschweig, Germany
[3] Italian Natl Inst Metrol, Turin, Italy
[4] Ctr Appl Energy Res, Wurzburg, Germany
[5] Sci & Technol Res Inst Turkiye, Ankara, Turkiye
[6] Forschungsinst Warmeschutz eV, Munich, Germany
[7] CSIC, Inst Ciencias LA Construcc Eduardo Torroja IETCC, Madrid, Spain
[8] CSIC, Inst Opt Daza Valdes IO, Madrid, Spain
[9] Lab Natl Metrol & Essais, Paris, France
[10] RISE Res Inst Sweden AB, Gothenburg, Sweden
[11] Dansk Fundamental Metrol AS, Horsholm, Denmark
[12] CNR, Sesto Fiorentino, Italy
[13] Natl & Kapodistrian Univ Athens, Athens, Greece
[14] Aalto Korkeakoulusaatio Sr, Espoo, Finland
[15] Cooling Photon Sociedad Limitada, Barcelona, Spain
[16] Almeco Grp, San Giuliano Milanese, Italy
[17] Deutsch Gesell Int Zusammenarbeit GIZ GmbH, Eschborn, Germany
[18] Deutsch Gesell Int Zusammenarbeit GIZ GmbH, Kigali, Rwanda
[19] Heiko Herzog Kompetenz Lack Farbe, Kirschweiler, Germany
[20] Univ Politecn Cataluna, Barcelona, Spain
关键词
Emissivity; Reflectivity; Passive radiative cooling; PAINTS; ENERGY;
D O I
10.1007/s10765-025-03532-6
中图分类号
O414.1 [热力学];
学科分类号
摘要
Due to their optical properties, passive radiative cooling (PRC) materials can effectively reflect solar radiation while simultaneously dissipating heat through the infrared transparency windows using outer space as a cold and renewable heat sink. This makes it possible to achieve sub-ambient temperatures even in direct sunlight without using any electricity for cooling or air-conditioning. However, the accurate determination of these peculiar optical properties is challenging and subject to high uncertainty levels when using commercial instruments available to industrial end users and research laboratories. Within the EU project PaRaMetriC, aiming at establishing a metrological framework for the comparable performance evaluation of PRC technologies, the Physikalisch-Technische Bundesanstalt is leading a work package dedicated to the development of accurate and traceable methods to determine the infrared optical and thermophysical properties of PRC materials. These include reflectivity and emissivity in the broad spectral range from 250 nm to 50 mu m, encompassing both, the solar spectrum (250 nm-2500 nm) and the infrared transparency window of the atmosphere (7.1 mu m-13 mu m) with a target absolute uncertainty of less than 0.03. For this purpose, several candidate benchmark passive cooling materials have been characterized by PTB in the wavelength range between 1.4 mu m and 50 mu m. The range 250 nm to 1.4 mu m will be covered in an upcoming paper. Characterizations of, and comparisons between, reference and end-user measurement techniques applied for the measurements of selected PRC materials will not only allow accurate determination of the thermophysical properties, but also identification of measurement problems and suitable approaches in this rapidly expanding field.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] CELLULAR INORGANIC CERAMIC FOR HIGHLY EFFICIENT DAYTIME PASSIVE RADIATIVE COOLING
    Lin, Kaixin
    Zhu, Yihao
    Ho, Tsz Chung
    Tso, Chi Yan
    [J]. PROCEEDINGS OF ASME 2023 17TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2023, 2023,
  • [22] Numerical investigations of novel hybrid solid desiccant cooling systems combined with passive radiative cooling panels
    Pan, Aiqiang
    Chen, Yi
    Lin, Kaixin
    Bai, Shengxi
    Ho, Tsz Chung
    Tso, Chi Yan
    [J]. RENEWABLE ENERGY, 2024, 226
  • [23] Slippery Passive Radiative Cooling Supramolecular Siloxane Coatings
    Dong, Shihua
    Wu, Qian
    Zhang, Wenluan
    Xia, Guifeng
    Yang, Li
    Cui, Jiaxi
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) : 4571 - 4578
  • [24] Superhydrophobic bilayer coating for passive daytime radiative cooling
    Zhao, Bin
    Xu, Chengfeng
    Jin, Cheng
    Lu, Kegui
    Chen, Ken
    Li, Xiansheng
    Li, Lanxin
    Pei, Gang
    [J]. NANOPHOTONICS, 2024, 13 (05) : 583 - 591
  • [25] Systematical analysis of ideal absorptivity for passive radiative cooling
    Li, Yulian
    Li, Linzhi
    Guo, Li
    An, Bowen
    [J]. OPTICAL MATERIALS EXPRESS, 2020, 10 (08) : 1767 - 1777
  • [26] Selection of ideal emissivity spectrum for radiative cooling and its application in water harvesting
    Gao, Jiajun
    Zhan, Ying
    Fan, Chunzhen
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 231
  • [27] Nanoporous Film Layers to Enhance the Performance of Passive Radiative Cooling Paint Mixtures
    Lio, Giuseppe Emanuele
    Levorin, Sara
    Erdogan, Atakan
    Werle, Jeremy
    Corso, Alain J.
    Schenato, Luca
    Wiersma, Diederik S.
    Santagiustina, Marco
    Pattelli, Lorenzo
    Pelizzo, Maria Guglielmina
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2024, 45 (11)
  • [28] Easy Way to Achieve Self-Adaptive Cooling of Passive Radiative Materials
    Xia, Zhilin
    Fang, Zhen
    Zhang, Zhenfei
    Shi, Kailiang
    Meng, Zhenghua
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (24) : 27241 - 27248
  • [29] Reflectivity and emissivity modeling for metals and plastics at THz frequencies
    Griffin, Steven T.
    Jacobs, Eddie L.
    Murrill, Steve R.
    [J]. TERAHERTZ FOR MILITARY AND SECURITY APPLICATIONS V, 2007, 6549
  • [30] Optimized thin film coatings for passive radiative cooling applications
    Naghshine, Babak B.
    Saboonchi, Ahmad
    [J]. OPTICS COMMUNICATIONS, 2018, 410 : 416 - 423