Emissivity and Reflectivity Measurements for Passive Radiative Cooling Technologies

被引:0
|
作者
Adibekyan, A. [1 ]
Schumacher, J. [2 ]
Pattelli, L. [3 ]
Manara, J. [4 ]
Meric, S. [5 ]
Bazkir, O. [5 ]
Cucchi, C. [6 ]
Sprengard, C. [6 ]
Perez, G. [7 ]
Campos, J. [8 ]
Hameury, J. [9 ]
Andersson, A. [10 ]
Clausen, S. [11 ]
Belotti, C. [12 ]
Efthymiou, S. [13 ]
Assimakopoulos, M. -n. [13 ]
Papadaki, D. [13 ]
Manoocheri, F. [14 ]
Llados, A. [15 ]
Jaramillo-Fernandez, J. [15 ,20 ]
Gionfini, T. [16 ]
Ortisi, M. [16 ]
Peter, A. [17 ]
Kleinbub, M. [18 ]
Bante, J. [2 ]
Donath, L. [2 ]
Herzog, H. [19 ]
Monte, C. [1 ]
机构
[1] Phys Tech Bundesanstalt, Abbestr 2-12, D-10587 Berlin, Germany
[2] Phys Tech Bundesanstalt, Braunschweig, Germany
[3] Italian Natl Inst Metrol, Turin, Italy
[4] Ctr Appl Energy Res, Wurzburg, Germany
[5] Sci & Technol Res Inst Turkiye, Ankara, Turkiye
[6] Forschungsinst Warmeschutz eV, Munich, Germany
[7] CSIC, Inst Ciencias LA Construcc Eduardo Torroja IETCC, Madrid, Spain
[8] CSIC, Inst Opt Daza Valdes IO, Madrid, Spain
[9] Lab Natl Metrol & Essais, Paris, France
[10] RISE Res Inst Sweden AB, Gothenburg, Sweden
[11] Dansk Fundamental Metrol AS, Horsholm, Denmark
[12] CNR, Sesto Fiorentino, Italy
[13] Natl & Kapodistrian Univ Athens, Athens, Greece
[14] Aalto Korkeakoulusaatio Sr, Espoo, Finland
[15] Cooling Photon Sociedad Limitada, Barcelona, Spain
[16] Almeco Grp, San Giuliano Milanese, Italy
[17] Deutsch Gesell Int Zusammenarbeit GIZ GmbH, Eschborn, Germany
[18] Deutsch Gesell Int Zusammenarbeit GIZ GmbH, Kigali, Rwanda
[19] Heiko Herzog Kompetenz Lack Farbe, Kirschweiler, Germany
[20] Univ Politecn Cataluna, Barcelona, Spain
关键词
Emissivity; Reflectivity; Passive radiative cooling; PAINTS; ENERGY;
D O I
10.1007/s10765-025-03532-6
中图分类号
O414.1 [热力学];
学科分类号
摘要
Due to their optical properties, passive radiative cooling (PRC) materials can effectively reflect solar radiation while simultaneously dissipating heat through the infrared transparency windows using outer space as a cold and renewable heat sink. This makes it possible to achieve sub-ambient temperatures even in direct sunlight without using any electricity for cooling or air-conditioning. However, the accurate determination of these peculiar optical properties is challenging and subject to high uncertainty levels when using commercial instruments available to industrial end users and research laboratories. Within the EU project PaRaMetriC, aiming at establishing a metrological framework for the comparable performance evaluation of PRC technologies, the Physikalisch-Technische Bundesanstalt is leading a work package dedicated to the development of accurate and traceable methods to determine the infrared optical and thermophysical properties of PRC materials. These include reflectivity and emissivity in the broad spectral range from 250 nm to 50 mu m, encompassing both, the solar spectrum (250 nm-2500 nm) and the infrared transparency window of the atmosphere (7.1 mu m-13 mu m) with a target absolute uncertainty of less than 0.03. For this purpose, several candidate benchmark passive cooling materials have been characterized by PTB in the wavelength range between 1.4 mu m and 50 mu m. The range 250 nm to 1.4 mu m will be covered in an upcoming paper. Characterizations of, and comparisons between, reference and end-user measurement techniques applied for the measurements of selected PRC materials will not only allow accurate determination of the thermophysical properties, but also identification of measurement problems and suitable approaches in this rapidly expanding field.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Performance of passive daytime radiative cooling coating with CaSiO3 enhanced solar reflectivity and atmospheric window emissivity
    Liu, Mingrao
    Zhang, Shuai
    Li, Fuxi
    Zhang, Canying
    Zhu, Haitao
    Wu, Daxiong
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (44)
  • [2] Hierarchically structured passive radiative cooling ceramic with high solar reflectivity
    Lin, Kaixin
    Chen, Siru
    Zeng, Yijun
    Ho, Tsz Chung
    Zhu, Yihao
    Wang, Xiong
    Liu, Fayu
    Huang, Baoling
    Chao, Christopher Yu-Hang
    Wang, Zuankai
    Tso, Chi Yan
    SCIENCE, 2023, 382 (6671) : 691 - 697
  • [3] Progress of passive daytime radiative cooling technologies towards commercial applications
    Cui, Yan
    Luo, Xianyu
    Zhang, Fenghua
    Sun, Le
    Jin, Nuo
    Yang, Weimin
    PARTICUOLOGY, 2022, 67 : 57 - 67
  • [4] Butterfly wing-inspired microstructured film with high reflectivity for efficient passive radiative cooling
    Xu, Nuo
    Wang, Jiacheng
    Cui, Yubo
    Ren, Shenghao
    Deng, Jiangbin
    Gou, Qianzhi
    Chen, Zhaoyu
    Wang, Kaixin
    Geng, Yang
    Cui, Jiaxi
    Li, Meng
    RENEWABLE ENERGY, 2024, 229
  • [5] INVESTIGATION OF PASSIVE RADIATIVE COOLING USING BIOPOLYMERS
    Khanghah, Zahra Kamali
    Tenorio, Miguel Moreno
    Brown, Judith
    Eymael, Guilherme Mainieri
    Ghashami, Mohammad
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 8, 2022,
  • [6] Materials in Radiative Cooling Technologies
    Liu, Rong
    Wang, Shancheng
    Zhou, Zhengui
    Zhang, Keyi
    Wang, Guanya
    Chen, Changyuan
    Long, Yi
    ADVANCED MATERIALS, 2025, 37 (02)
  • [7] Using passive evaporation to improve radiative cooling performance
    Xia, Zhilin
    Li, Lintao
    Shi, Kailiang
    Fang, Zhen
    Fan, Xiaochun
    JOURNAL OF PHOTONICS FOR ENERGY, 2022, 12 (01)
  • [8] Emerging Materials and Strategies for Passive Daytime Radiative Cooling
    Gao, Wei
    Chen, Yongping
    SMALL, 2023, 19 (18)
  • [9] Optically selective PDMS/AIN coatings as a passive daytime radiative cooling design
    Mabchour, G.
    Benlattar, M.
    Saadouni, K.
    Mazroui, M.
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 390 - 395
  • [10] Radiative Cooling: Lattice Quantization and Surface Emissivity in Thin Coatings
    Suryawanshi, Chetan N.
    Lin, Chhiu-Tsu
    ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (06) : 1334 - 1338