The effect of time delay on the dynamics of a fractional-order epidemic model

被引:0
|
作者
Wu, Wanqin [1 ,2 ]
Zhou, Jianwen [1 ]
Li, Zhixiang [2 ]
Tan, Xuewen [2 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Yunnan Minzu Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Time-delay; Fractional; Saturated incidence rates; Global dynamics; Bifurcation theory; STABILITY;
D O I
10.1186/s13662-025-03868-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study establishes a novel time-delay fractional SEIHR infectious disease model to investigate the effects of saturated incidence rates and time delays on different populations, including susceptibles, infected individuals, recovered individuals, and latent infected individuals. First, the existence and boundedness of the model's solutions are verified, confirming its well-posedness. Subsequently, the existence of equilibria is analyzed, and the impact of parameter variations on the system is explored by examining the equilibria & varepsilon;0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon _{0} $\end{document} and & varepsilon;& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon _{*} $\end{document}, as well as the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0} $\end{document}. Additionally, the global dynamics of the equilibria are further analyzed using the Lyapunov method, while Hopf bifurcation theory is applied to explore the conditions under which the system shifts from stability to oscillatory behavior. Numerical simulations further validate the theoretical analysis, showing that time-delay effects significantly influence the system's responsiveness and the rate of disease transmission. Moreover, when the time delay tau crosses the critical threshold tau 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau _{0} $\end{document}, the system exhibits periodic oscillations. By predicting periodic fluctuations and incorporating memory effects and persistent influences, we can better control epidemics, emphasizing the importance of time-delay adjustments and enhancing the system's biological realism.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Modeling and Application of Fractional-Order Economic Growth Model with Time Delay
    Lin, Ziyi
    Wang, Hu
    FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [32] Delay Time Fractional-Order Model for the Soft Exoskeleton Glove Control
    Ivanescu, Mircea
    Popescu, Nirvana
    Popescu, Decebal
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2021, 51 (06) : 740 - 745
  • [33] A fractional-order control model for diabetes with restraining and time-delay
    Balakrishnan, Ganesh Priya
    Chinnathambi, Rajivganthi
    Rihan, Fathalla A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3403 - 3420
  • [34] Chaotic Dynamics and FPGA Implementation of a Fractional-Order Chaotic System With Time Delay
    Sayed, Wafaa S.
    Roshdy, Merna
    Said, Lobna A.
    Radwan, Ahmed G.
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2020, 1 (01): : 255 - 262
  • [35] Chaotic Dynamics and Chaos Control in a Fractional-Order Satellite Model and Its Time-Delay Counterpart
    Sayed, Ahmed M.
    Matouk, A. E.
    Kumar, Sanjay
    Ali, Vakkar
    Bachioua, Lahcene
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [36] An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers
    Hamamci, Serdar Ethem
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) : 1964 - 1969
  • [37] Stability Region of Fractional-Order PIλDμ Controller for Fractional-Order Systems with Time Delay
    Wu, Qunhong
    Ou, Linlin
    Ni, Hongjie
    Zhang, Weidong
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 1767 - 1772
  • [38] Fractional-order IMC-PID controller design for fractional-order time delay processes
    Ahmadi, Amirhossein
    Amani, Ali Moradi
    Boroujeni, Farshad Amini
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 409 - 414
  • [39] Dynamics of fractional-order delay differential model for tumor-immune system
    Rihan, F. A.
    Velmurugan, G.
    CHAOS SOLITONS & FRACTALS, 2020, 132
  • [40] Fractional-Order Dengue Disease Epidemic Model in Nepal
    Pandey H.R.
    Phaijoo G.R.
    Gurung D.B.
    International Journal of Applied and Computational Mathematics, 2022, 8 (5)