A Modified Swin-UNet Model for Coastal Wetland Classification Using Multi-Temporal Sentinel-2 Images

被引:0
|
作者
Wang, Binyu [1 ]
Sun, Yuanheng [1 ]
Zhu, Xueyuan [1 ]
Teng, Senlin [1 ]
Li, Ying [1 ]
机构
[1] Dalian Maritime Univ, Environm Informat Inst, Nav Coll, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Wetland classification; Deep learning; Multi-temporal; Swin-UNet; Sentinel-2; SEMANTIC SEGMENTATION; INFORMATION; NETWORK; MAP;
D O I
10.1007/s12237-025-01498-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Coastal wetlands are of great importance in protecting biodiversity, mitigating climate change, and providing natural resources. Using deep learning methods for the classification and mapping of coastal wetlands with optical remote sensing data can effectively monitor changes in wetlands, playing a crucial role in their protection. However, most current wetland classification methods focus on single-temporal data, with relatively few studies addressing multi-temporal data. Therefore, for the wetland classification task in the Bohai Rim region of China, an improved Swin-MTNet model based on the state-of-the-art deep learning model Swin-UNet is proposed in this study to better capture temporal feature variations with multi-temporal Sentinel-2 imagery. The Swin-MTNet is compared with Swin-UNet and DeepLabV3+, and the results indicate that Swin-MTNet achieves overall accuracy improvements of 5.12% and 2.85% and Kappa coefficient improvements of 6.85% and 3.86% over Swin-UNet and DeepLabV3+, respectively, when utilizing multi-temporal data. The classification improvement for Spartina alterniflora is the most significant, with F1 scores increasing by 0.45 and 0.47 compared to Swin-UNet and DeepLabV3+, respectively. These results demonstrate that the proposed Swin-MTNet model can effectively leverage the temporal features of multi-temporal data, significantly improving the accuracy of coastal wetland classification.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Evaluation of multi-temporal sentinel-2 capabilities for estimation of leaf chlorophyll concentration
    Morgan, R. S.
    Faisal, M.
    Atta, Y.
    Rahim, I. S.
    BIOSCIENCE RESEARCH, 2018, 15 (03): : 2534 - 2541
  • [42] Towards a Multi-Temporal Deep Learning Approach for Mapping Urban Fabric Using Sentinel 2 Images
    El Mendili, Lamiae
    Puissant, Anne
    Chougrad, Mehdi
    Sebari, Imane
    REMOTE SENSING, 2020, 12 (03)
  • [43] An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery
    Zhu, Jun
    Pan, Ziwu
    Wang, Hang
    Huang, Peijie
    Sun, Jiulin
    Qin, Fen
    Liu, Zhenzhen
    SENSORS, 2019, 19 (09)
  • [44] Cloud Detection from Sentinel-2 Images Using DeepLabV3+ and Swin Transformer Models
    Kang, Jonggu
    Park, Ganghyun
    Kim, Geunah
    Youn, Youjeong
    Choi, Soyeon
    Lee, Yangwon
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 1743 - 1747
  • [45] Mapping Maize Area in Heterogeneous Agricultural Landscape with Multi-Temporal Sentinel-1 and Sentinel-2 Images Based on Random Forest
    Chen, Yansi
    Hou, Jinliang
    Huang, Chunlin
    Zhang, Ying
    Li, Xianghua
    REMOTE SENSING, 2021, 13 (15)
  • [46] MULTI-TEMPORAL DATA AUGMENTATION FOR HIGH FREQUENCY SATELLITE IMAGERY: A CASE STUDY IN SENTINEL-1 AND SENTINEL-2 BUILDING AND ROAD SEGMENTATION
    Ayala, C.
    Aranda, C.
    Galar, M.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 25 - 32
  • [47] Investigation of the accuracy of ground reference datasets using multi-temporal Sentinel-2 satellite images: A case study with barley and wheat crops
    Yasar, Oguzhan
    Yagci, Ali Levent
    GEOMATIK, 2023, 8 (03): : 277 - 292
  • [48] Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data
    Hoscilo, Agata
    Lewandowska, Aneta
    REMOTE SENSING, 2019, 11 (08)
  • [49] New Workflow of Plastic-Mulched Farmland Mapping using Multi-Temporal Sentinel-2 data
    Hao, Pengyu
    Chen, Zhongxin
    Tang, Huajun
    Li, Dandan
    Li, He
    REMOTE SENSING, 2019, 11 (11)
  • [50] Sentinel-2 images deliver possibilities for accurate and consistent multi-temporal benthic habitat maps in optically shallow water
    Wicaksono, Pramaditya
    Wulandari, Shafa Arum
    Lazuardi, Wahyu
    Munir, Miftakhul
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 23