A Novel Study of the (2+1)-Dimensional Hietarinta Equation with a Trivial Balancing Number

被引:0
作者
Seele, M. F. [1 ]
Muatjetjeja, B. [1 ,2 ,3 ]
Motsumi, T. G. [1 ]
Adem, A. R. [3 ]
机构
[1] Univ Botswana, Fac Sci, Dept Math, Private Bag 22, Gaborone, Botswana
[2] North West Univ, Dept Math Sci, Private Bag X 2046, ZA-2735 Mmabatho, South Africa
[3] Univ South Africa UNISA, Dept Math Sci, ZA-0003 Pretoria, South Africa
关键词
Hietarinta equation; Analytical solutions; Point symmetries; Conservation laws; DE-VRIES EQUATION; SOLITON-SOLUTIONS; WAVE SOLUTIONS;
D O I
10.1007/s10773-025-05960-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the study of nonlinear evolution equations, the three-soliton method was implemented to investigate the integrability of the (1+1)-dimensional bilinear Hietarinta equation. In this paper, we study a (2+1)-dimensional version of the Hietarinta equation. It will be shown that the transformed (2+1)-dimensional Hietarinta equation admits a trivial balancing number. The symmetry method will be used to derive exact solutions of this equation. It will be further shown that although the balancing number is trivial, this equation admits some special analytical solutions via ansatz methods. Furthermore, we derive low-order conservation of the aforesaid equation. Finally, a brief physical interpretation of the derived results is presented.
引用
收藏
页数:26
相关论文
共 30 条
[1]   Lump solutions to a generalized Hietarinta-type equation via symbolic computation [J].
Batwa, Sumayah ;
Ma, Wen-Xiu .
FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (03) :435-450
[2]  
Bluman GW., 1989, Symmetries and differential equations, Vvol. 81
[3]   Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation [J].
Bruzon, M. S. ;
Recio, E. ;
de la Rosa, R. ;
Gandarias, M. L. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) :1631-1641
[4]   Backlund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation [J].
Chen, Si-Jia ;
Ma, Wen-Xiu ;
Lu, Xing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83
[5]   An extended (2+1)-dimensional modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation: Lax pair and Darboux transformation [J].
Cheng, Li ;
Zhang, Yi ;
Ma, Wen-Xiu .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (03)
[6]   Integrability and multiple-rogue and multi-soliton wave solutions of the (3+1)-dimensional Hirota-Satsuma-Ito equation [J].
Chu, Jingyi ;
Liu, Yaqing ;
Ma, Wen-Xiu .
MODERN PHYSICS LETTERS B, 2025, 39 (21)
[7]   Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach [J].
Devi, Munesh ;
Yadav, Shalini ;
Arora, Rajan .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 404
[8]   Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2+1)-dimensional Konopelchenko-Dubrovsky equation [J].
Gao, Di ;
Ma, Wen-Xiu ;
Lu, Xing .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2024, 79 (09) :887-895
[9]   Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Backlund transformation [J].
Gao, Di ;
Lu, Xing ;
Peng, Ming-Shu .
PHYSICA SCRIPTA, 2023, 98 (09)
[10]   A New (3+1) Date-Jimbo-Kashiwara-Miwa Equation: Solutions and Conservation Laws [J].
Goitsemang, T. ;
Muatjetjeja, B. ;
Mothibi, D. M. ;
Motsumi, T. G. .
JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2023, 12 (02) :353-361