The local well-posedness and inviscid limit for a general form of Keller-Segel equation with logistic sources

被引:0
作者
Zheng, Shanshan [1 ]
Zhou, Shouming [2 ]
Yang, Li [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Chongqing Normal Univ, Coll Math, Chongqing 401331, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2025年 / 76卷 / 02期
基金
中国国家自然科学基金;
关键词
Local well-posedness; Continuity; Inviscid limit; PARABOLIC CHEMOTAXIS SYSTEM; NAVIER-STOKES EQUATIONS; TIME BLOW-UP; GLOBAL EXISTENCE; INITIAL DATA; MODEL; AGGREGATION; BOUNDEDNESS;
D O I
10.1007/s00033-025-02442-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the qualitative analysis for a general form of n-dimension Keller-Segel system with logistic sources (include the parabolic-elliptic Keller-Segel (PEKS) system and the corresponding hyperbolic-elliptic Keller-Segel (HEKS) system). By the transport (-diffusion) theory, we first establish the local existence and uniqueness of strong solutions to (PEKS) and (HEKS) for the initial data in B-p,r(s)(R-n) with s>max{(n)/(p),12}, 1 <= p,r <=infinity (or s=(n)/(p), 1 <= p <= 2n,r=1) and also obtain the continuity of the solution map with respect to the initial data in the space C([0;T];B-p,r(s)'(R-n))boolean AND C1([0;T];B-p,r(s)'-1(R-n)) for every s '<s when r=+infinity or s '=s when r<+infinity and then derive a continuation criterion result for (HEKS). In addition, we prove that this data-to-solution map for (PEKS) is discontinuous in the metric of B-2,infinity(s). Furthermore, we show that the inviscid limit of the (PEKS) converges to the (HEKS) in the same topology of Besov spaces as the initial data u(0)is an element of B-p,r(s)(R-n).
引用
收藏
页数:29
相关论文
共 54 条
[11]   Boundedness in a fully parabolic chemotaxis system with singular sensitivity [J].
Fujie, Kentarou .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) :675-684
[12]   Local well-posedness of the incompressible Euler equations in B∞,11 and the inviscid limit of the Cheek for Navier-Stokes equations [J].
Guo, Zihua ;
Li, Jinlu ;
Yin, Zhaoyang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (09) :2821-2830
[13]  
Horstmann D., 2003, JAHRESBERICHT DTSCH, V105, P103
[14]  
Hou QQ, 2020, Arxiv, DOI arXiv:2010.04394
[15]   Local solvability of the Keller-Segel system with Cauchy data in the Besov spaces [J].
Iwabuchi, Tsukasa .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (09) :1273-1277
[16]   Global well-posedness for Keller-Segel system in Besov type spaces [J].
Iwabuchi, Tsukasa .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :930-948
[17]   Blowup and global solutions in a chemotaxis-growth system [J].
Kang, Kyungkeun ;
Stevens, Angela .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 135 :57-72
[18]   MODEL FOR CHEMOTAXIS [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1971, 30 (02) :225-&
[19]   TRAVELING BANDS OF CHEMOTACTIC BACTERIA - THEORETICAL ANALYSIS [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1971, 30 (02) :235-&
[20]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&