The local well-posedness and inviscid limit for a general form of Keller-Segel equation with logistic sources

被引:0
作者
Zheng, Shanshan [1 ]
Zhou, Shouming [2 ]
Yang, Li [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Chongqing Normal Univ, Coll Math, Chongqing 401331, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2025年 / 76卷 / 02期
基金
中国国家自然科学基金;
关键词
Local well-posedness; Continuity; Inviscid limit; PARABOLIC CHEMOTAXIS SYSTEM; NAVIER-STOKES EQUATIONS; TIME BLOW-UP; GLOBAL EXISTENCE; INITIAL DATA; MODEL; AGGREGATION; BOUNDEDNESS;
D O I
10.1007/s00033-025-02442-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the qualitative analysis for a general form of n-dimension Keller-Segel system with logistic sources (include the parabolic-elliptic Keller-Segel (PEKS) system and the corresponding hyperbolic-elliptic Keller-Segel (HEKS) system). By the transport (-diffusion) theory, we first establish the local existence and uniqueness of strong solutions to (PEKS) and (HEKS) for the initial data in B-p,r(s)(R-n) with s>max{(n)/(p),12}, 1 <= p,r <=infinity (or s=(n)/(p), 1 <= p <= 2n,r=1) and also obtain the continuity of the solution map with respect to the initial data in the space C([0;T];B-p,r(s)'(R-n))boolean AND C1([0;T];B-p,r(s)'-1(R-n)) for every s '<s when r=+infinity or s '=s when r<+infinity and then derive a continuation criterion result for (HEKS). In addition, we prove that this data-to-solution map for (PEKS) is discontinuous in the metric of B-2,infinity(s). Furthermore, we show that the inviscid limit of the (PEKS) converges to the (HEKS) in the same topology of Besov spaces as the initial data u(0)is an element of B-p,r(s)(R-n).
引用
收藏
页数:29
相关论文
共 54 条
[1]  
[Anonymous], 2004, Milan J. Math.
[2]  
Bae H, 2011, ADV DIFFER EQU CONTR, V7, P93
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[4]  
Biler P., 1999, Adv Math Sci Appl, V9, P347
[5]   Two-dimensional chemotaxis models with fractional diffusion [J].
Biler, Piotr ;
Wu, Gang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (01) :112-126
[6]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[7]  
Danchin R., 2005, LECT NOTES
[8]  
Dolak Y, 2005, SIAM J APPL MATH, V66, P286, DOI 10.1137/040612841
[9]   On the continuity of the solutions to the Navier-Stokes equations with initial data in critical Besov spaces [J].
Farwig, Reinhard ;
Giga, Yoshikazu ;
Hsu, Pen-Yuan .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (05) :1495-1511
[10]   Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity [J].
Fujie, Kentarou ;
Winkler, Michael ;
Yokota, Tomomi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (06) :1212-1224