SeizyML: An Application for Semi-Automated Seizure Detection Using Interpretable Machine Learning Models

被引:0
作者
Antonoudiou, Pantelis [1 ]
Basu, Trina [1 ]
Maguire, Jamie [1 ]
机构
[1] Tufts Univ, Sch Med, Dept Neurosci, Boston, MA 02111 USA
关键词
Seizure-detection; EEG; Electrographic recordings; Machine-learning; !text type='Python']Python[!/text; Open-source; Epilepsy; Software; INTERNATIONAL-LEAGUE; COMMISSION; EPILEPSY; EEG;
D O I
10.1007/s12021-025-09719-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Despite the vast number of publications reporting seizures and the reliance of the field on accurate seizure detection, there is a lack of open-source software tools in the scientific community for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient and can be error prone and heavily biased. Here we have developed - SeizyML - an open-source software that combines machine learning models with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures. We compared the validity of four interpretable machine learning classifiers (decision tree, gaussian na & iuml;ve bayes, passive aggressive classifier, and stochastic gradient descent classifier) on an extensive electrographic seizure dataset that we collected from chronically epileptic mice. We find that the gaussian na & iuml;ve bayes model detected all seizures in our dataset, had the lowest false detection rate, was robust to misclassifications, and only required a small amount of data to train. This approach has the potential to be a transformative research tool overcoming the analysis bottleneck that slows research progress.
引用
收藏
页数:17
相关论文
共 31 条
[21]   "Why Should I Trust You?" Explaining the Predictions of Any Classifier [J].
Ribeiro, Marco Tulio ;
Singh, Sameer ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :1135-1144
[23]   Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization [J].
Selvaraju, Ramprasaath R. ;
Cogswell, Michael ;
Das, Abhishek ;
Vedantam, Ramakrishna ;
Parikh, Devi ;
Batra, Dhruv .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :618-626
[24]   Seizure Types Classification by Generating Input Images With in-Depth Features From Decomposed EEG Signals for Deep Learning Pipeline [J].
Shankar, Anand ;
Dandapat, Samarendra ;
Barma, Shovan .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (10) :4903-4912
[25]  
Shoeb A, 2010, P ICML 2010 P 27 INT, P975
[26]   Epileptic Seizures Detection Using Deep Learning Techniques: A Review [J].
Shoeibi, Afshin ;
Khodatars, Marjane ;
Ghassemi, Navid ;
Jafari, Mahboobeh ;
Moridian, Parisa ;
Alizadehsani, Roohallah ;
Panahiazar, Maryam ;
Khozeimeh, Fahime ;
Zare, Assef ;
Hosseini-Nejad, Hossein ;
Khosravi, Abbas ;
Atiya, Amir F. ;
Aminshahidi, Diba ;
Hussain, Sadiq ;
Rouhani, Modjtaba ;
Nahavandi, Saeid ;
Acharya, Udyavara Rajendra .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (11)
[27]   A review of epileptic seizure detection using machine learning classifiers [J].
Siddiqui M.K. ;
Morales-Menendez R. ;
Huang X. ;
Hussain N. .
Brain Informatics, 2020, 7 (01)
[28]   One Pixel Attack for Fooling Deep Neural Networks [J].
Su, Jiawei ;
Vargas, Danilo Vasconcellos ;
Sakurai, Kouichi .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (05) :828-841
[29]   EEG datasets for seizure detection and prediction- A review [J].
Wong, Sheng ;
Simmons, Anj ;
Rivera-Villicana, Jessica ;
Barnett, Scott ;
Sivathamboo, Shobi ;
Perucca, Piero ;
Ge, Zongyuan ;
Kwan, Patrick ;
Kuhlmann, Levin ;
Vasa, Rajesh ;
Mouzakis, Kon ;
O'Brien, Terence J. .
EPILEPSIA OPEN, 2023, 8 (02) :252-267
[30]   Artificial intelligence in healthcare [J].
Yu, Kun-Hsing ;
Beam, Andrew L. ;
Kohane, Isaac S. .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (10) :719-731