SeizyML: An Application for Semi-Automated Seizure Detection Using Interpretable Machine Learning Models

被引:0
作者
Antonoudiou, Pantelis [1 ]
Basu, Trina [1 ]
Maguire, Jamie [1 ]
机构
[1] Tufts Univ, Sch Med, Dept Neurosci, Boston, MA 02111 USA
关键词
Seizure-detection; EEG; Electrographic recordings; Machine-learning; !text type='Python']Python[!/text; Open-source; Epilepsy; Software; INTERNATIONAL-LEAGUE; COMMISSION; EPILEPSY; EEG;
D O I
10.1007/s12021-025-09719-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Despite the vast number of publications reporting seizures and the reliance of the field on accurate seizure detection, there is a lack of open-source software tools in the scientific community for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient and can be error prone and heavily biased. Here we have developed - SeizyML - an open-source software that combines machine learning models with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures. We compared the validity of four interpretable machine learning classifiers (decision tree, gaussian na & iuml;ve bayes, passive aggressive classifier, and stochastic gradient descent classifier) on an extensive electrographic seizure dataset that we collected from chronically epileptic mice. We find that the gaussian na & iuml;ve bayes model detected all seizures in our dataset, had the lowest false detection rate, was robust to misclassifications, and only required a small amount of data to train. This approach has the potential to be a transformative research tool overcoming the analysis bottleneck that slows research progress.
引用
收藏
页数:17
相关论文
共 31 条
[1]  
Nguyen A, 2015, PROC CVPR IEEE, P427, DOI 10.1109/CVPR.2015.7298640
[2]  
Basu T, 2022, bioRxiv, DOI [10.1101/2022.03.15.484525, 10.1101/2022.03.15.484525, DOI 10.1101/2022.03.15.484525]
[3]   The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database [J].
Benjamens, Stan ;
Dhunnoo, Pranavsingh ;
Mesko, Bertalan .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[4]   High-frequency oscillations after status epilepticus: Epileptogenesis and seizure genesis [J].
Bragin, A ;
Wilson, CL ;
Almajano, J ;
Mody, I ;
Engel, T .
EPILEPSIA, 2004, 45 (09) :1017-1023
[5]   Somnotate: A probabilistic sleep stage classifier for studying vigilance state transitions [J].
Brodersen, Paul J. N. ;
Alfonsa, Hannah ;
Krone, Lukas B. ;
Blanco-Duque, Cristina ;
Fisk, Angus S. ;
Flaherty, Sarah J. ;
Guillaumin, Mathilde C. C. ;
Huang, Yi-Ge ;
Kahn, Martin C. ;
McKillop, Laura E. ;
Milinski, Linus ;
Taylor, Lewis ;
Thomas, Christopher W. ;
Yamagata, Tomoko ;
Foster, Russell G. ;
Vyazovskiy, Vladyslav V. ;
Akerman, Colin J. .
PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (01)
[6]   The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes [J].
Buzsaki, Gyoergy ;
Anastassiou, Costas A. ;
Koch, Christof .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (06) :407-420
[7]   A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG [J].
Chen, Duo ;
Wan, Suiren ;
Xiang, Jing ;
Bao, Forrest Sheng .
PLOS ONE, 2017, 12 (03)
[8]   Comparison of different input modalities and network structures for deep learning-based seizure detection [J].
Cho, Kyung-Ok ;
Jang, Hyun-Jong .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]  
Crammer K, 2006, J MACH LEARN RES, V7, P551
[10]   Improved Manual Annotation of EEG Signals through Convolutional Neural Network Guidance [J].
Diachenko, Marina ;
Houtman, Simon J. ;
Juarez-Martinez, Erika L. ;
Ramautar, Jennifer R. ;
Weiler, Robin ;
Mansvelder, Huibert D. ;
Bruining, Hilgo ;
Bloem, Peter ;
Linkenkaer-Hansen, Klaus .
ENEURO, 2022, 9 (05)