Upper Bounds on the Multicolor Ramsey Numbers rk(C4)

被引:0
作者
Li, Tian-yu [1 ]
Lin, Qi-zhong [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350108, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2025年 / 41卷 / 01期
基金
中国国家自然科学基金;
关键词
Multicolor Ramsey number; Tur & aacute; n number; 4-cycle; GRAPHS;
D O I
10.1007/s10255-023-1074-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The multicolor Ramsey number rk(C4) is the smallest integer N such that any k-edge coloring of KN contains a monochromatic C4. The current best upper bound of rk(C4) was obtained by Chung (1974) and independently by Irving (1974), i.e., rk(C4) <= k2 + k + 1 for all k >= 2. There is no progress on the upper bound since then. In this paper, we improve the upper bound of rk(C4) by showing that rk(C4) <= k2 + k - 1 for even k >= 6. The improvement is based on the upper bound of the Tur & aacute;n number ex(n, C4), in which we mainly use the double counting method and many novel ideas from Firke, Kosek, Nash, and Williford [J. Combin. Theory, Ser. B 103 (2013), 327-336].
引用
收藏
页码:286 / 294
页数:9
相关论文
共 42 条
  • [31] Upper bounds on the extremal number of the 4-cycle
    Ma, Jie
    Yang, Tianchi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 1655 - 1667
  • [32] The Degree Distance of Nanotubes Covered by C4
    Li, Junfeng
    Chen, Shubo
    Xia, Fangli
    Long, Tao
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (10) : 2194 - 2197
  • [33] Extremal digraphs avoiding an orientation of C4
    Huang, Zejun
    Lyu, Zhenhua
    DISCRETE MATHEMATICS, 2020, 343 (05)
  • [34] New Upper Bounds for Vertex Folkman Numbers Fv(3, k; k+1)
    Shao, Zehui
    Pan, Linqiang
    Xu, Xiaodong
    UTILITAS MATHEMATICA, 2009, 80 : 91 - 96
  • [35] Calculating the extremal number ex(υ; {C3, C4, ... , Cn})
    Tang, Jianmin
    Lin, Yuqing
    Balbuena, Camino
    Miller, Mirka
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (09) : 2198 - 2206
  • [36] Light C4 and C5 in 3-polytopes with minimum degree 5
    Borodin, O. V.
    Ivanova, A. O.
    Woodall, D. R.
    DISCRETE MATHEMATICS, 2014, 334 : 63 - 69
  • [37] Supersaturation of C4: From Zarankiewicz towards Erdos-Simonovits-Sidorenko
    Nagy, Zoltan Lorant
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 75 : 19 - 31
  • [38] Linear saturation numbers of Berge-C3 and Berge-C4
    Wang, Changxin
    Zhang, Junxue
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 474
  • [39] UNIFORMLY RESOLVABLE (C4, K1,3)-DESIGNS OF INDEX 2
    Gionfriddo, Mario
    Kucukcifci, Selda
    Milici, Salvatore
    Yazici, E. Sule
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2018, 13 (01) : 23 - 34
  • [40] Some three-color Ramsey numbers, R(P4, P5, Ck) and R(P4, P6, Ck)
    Shao, Zehui
    Xu, Xiaodong
    Shi, Xiaolong
    Pan, Linqiang
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (02) : 396 - 403