Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing [68Ga]Ga-PSMA-11 PET/MRI

被引:0
|
作者
Spielvogel, Clemens P. [1 ]
Ning, Jing [2 ,3 ]
Kluge, Kilian [1 ,2 ]
Haberl, David [1 ]
Wasinger, Gabriel [3 ]
Yu, Josef [1 ]
Einspieler, Holger [1 ]
Papp, Laszlo [4 ]
Grubmueller, Bernhard [5 ,6 ,7 ]
Shariat, Shahrokh F. [7 ,8 ,9 ,10 ,11 ,12 ]
Baltzer, Pascal A. T. [13 ]
Clauser, Paola [13 ]
Hartenbach, Markus [1 ]
Kenner, Lukas [2 ,3 ,14 ,15 ]
Hacker, Marcus [1 ]
Haug, Alexander R. [1 ,2 ]
Rasul, Sazan [1 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Div Nucl Med, Vienna, Austria
[2] Christian Doppler Lab Appl Metabol, Vienna, Austria
[3] Med Univ Vienna, Dept Pathol, Vienna, Austria
[4] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[5] Univ Hosp Krems, Dept Orthoped, A-3500 Krems, Austria
[6] Karl Landsteiner Univ Hlth Sci, Krems, Austria
[7] Med Univ Vienna, Dept Urol, Vienna, Austria
[8] Univ Texas Southwestern Med Ctr, Dept Urol, Dallas, TX USA
[9] Jordan Univ Hosp, Dept Special Surg, Div Urol, Amman, Jordan
[10] Charles Univ Prague, Fac Med 2, Dept Urol, Prague, Czech Republic
[11] Weill Cornell Med Coll, Dept Urol, New York, NY USA
[12] Karl Landsteiner Inst Urol & Androl, Vienna, Austria
[13] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Div Gen & Pediat Radiol, Vienna, Austria
[14] Ctr Biomarker Res Med, Graz, Austria
[15] Univ Vet Med Vienna, Unit Pathol Lab Anim, Vienna, Austria
来源
INSIGHTS INTO IMAGING | 2024年 / 15卷 / 01期
关键词
Prostate cancer; PSMA; PET/MRI; Machine learning; Extraprostatic extension;
D O I
10.1186/s13244-024-01876-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesRadical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable machine learning (ML).MethodsPatients with newly diagnosed PCa who underwent [68Ga]Ga-PSMA-11 PET/MRI and subsequent RP were recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters, including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic parameters. ML models were subsequently compared with conventional PET/MRI-based image readings.ResultsThe study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95% CI 0.87-0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75-0.97) during independent validation. The ML approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02).ConclusionML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes.Critical relevance statementThis study demonstrates that integrating multimodal data with machine learning significantly improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional imaging methods and potentially leading to more accurate clinical staging and better treatment decisions.Key PointsExtraprostatic extension is an important indicator guiding treatment approaches.Current assessment of extraprostatic extension is difficult and lacks accuracy.Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Cost-effectiveness of the implementation of [68Ga]Ga-PSMA-11 PET/CT at initial prostate cancer staging
    van der Sar, Esmee C. A.
    Keusters, Willem R.
    van Kalmthout, Ludwike W. M.
    Braat, Arthur J. A. T.
    de Keizer, Bart
    Frederix, Geert W. J.
    Kooistra, Anko
    Lavalaye, Jules
    Lam, Marnix G. E. H.
    van Melick, Harm H. E.
    INSIGHTS INTO IMAGING, 2022, 13 (01)
  • [22] Digital versus analogue PET in [68Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer: a matched-pair comparison
    Ian Alberts
    George Prenosil
    Christos Sachpekidis
    Thilo Weitzel
    Kuangyu Shi
    Axel Rominger
    Ali Afshar-Oromieh
    European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47 : 614 - 623
  • [23] Digital versus analogue PET in [68Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer: a matched-pair comparison
    Alberts, Ian
    Prenosil, George
    Sachpekidis, Christos
    Weitzel, Thilo
    Shi, Kuangyu
    Rominger, Axel
    Afshar-Oromieh, Ali
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (03) : 614 - 623
  • [24] Prospective comparison of simultaneous [68Ga]Ga-PSMA-11 PET/MR versus PET/CT in patients with biochemically recurrent prostate cancer
    Jentjens, Sander
    Mai, Cindy
    Bidakhvidi, Niloefar Ahmadi
    De Coster, Liesbeth
    Mertens, Nathalie
    Koole, Michel
    Everaerts, Wouter
    Joniau, Steven
    Oyen, Raymond
    Van Laere, Koen
    Goffin, Karolien
    EUROPEAN RADIOLOGY, 2022, 32 (02) : 901 - 911
  • [25] Prospective comparison of simultaneous [68Ga]Ga-PSMA-11 PET/MR versus PET/CT in patients with biochemically recurrent prostate cancer
    Sander Jentjens
    Cindy Mai
    Niloefar Ahmadi Bidakhvidi
    Liesbeth De Coster
    Nathalie Mertens
    Michel Koole
    Wouter Everaerts
    Steven Joniau
    Raymond Oyen
    Koen Van Laere
    Karolien Goffin
    European Radiology, 2022, 32 : 901 - 911
  • [26] Dual-Time Point [68Ga]Ga-PSMA-11 PET/CT Hybrid Imaging for Staging and Restaging of Prostate Cancer
    Hoffmann, Manuela A.
    Buchholz, Hans-Georg
    Wieler, Helmut J.
    Rosar, Florian
    Miederer, Matthias
    Fischer, Nicolas
    Schreckenberger, Mathias
    CANCERS, 2020, 12 (10) : 1 - 15
  • [27] Performance of [68Ga]Ga-PSMA-11 PET/CT in patients with recurrent prostate cancer after prostatectomy—a multi-centre evaluation of 2533 patients
    Ali Afshar-Oromieh
    Marcelo Livorsi da Cunha
    Jairo Wagner
    Uwe Haberkorn
    Nils Debus
    Wolfgang Weber
    Matthias Eiber
    Tim Holland-Letz
    Isabel Rauscher
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 2925 - 2934
  • [28] Dependence of Renal Uptake on Kidney Function in [68Ga]Ga-PSMA-11 PET/CT Imaging
    Guehne, Falk
    Schilder, Till
    Seifert, Philipp
    Kuehnel, Christian
    Freesmeyer, Martin
    DIAGNOSTICS, 2024, 14 (07)
  • [29] Standardization of the [68Ga]Ga-PSMA-11 Radiolabeling Protocol in an Automatic Synthesis Module: Assessments for PET Imaging of Prostate Cancer
    Fuscaldi, Leonardo L.
    Sobral, Danielle V.
    Durante, Ana Claudia R.
    Mendonca, Fernanda F.
    Miranda, Ana Claudia C.
    da Cunha, Marcelo L.
    Malavolta, Luciana
    Mejia, Jorge
    de Barboza, Marycel F.
    PHARMACEUTICALS, 2021, 14 (05)
  • [30] Comparison of Multiparametric MRI, [68Ga]Ga-PSMA-11 PET-CT, and Clinical Nomograms for Primary T and N Staging of Intermediate-to-High-Risk Prostate Cancer
    Tayara, Omar Marek
    Pelka, Kacper
    Kunikowska, Jolanta
    Malewski, Wojciech
    Sklinda, Katarzyna
    Kamecki, Hubert
    Poletajew, Slawomir
    Kryst, Piotr
    Nyk, Lukasz
    CANCERS, 2023, 15 (24)