Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing [68Ga]Ga-PSMA-11 PET/MRI

被引:2
作者
Spielvogel, Clemens P. [1 ]
Ning, Jing [2 ,3 ]
Kluge, Kilian [1 ,2 ]
Haberl, David [1 ]
Wasinger, Gabriel [3 ]
Yu, Josef [1 ]
Einspieler, Holger [1 ]
Papp, Laszlo [4 ]
Grubmueller, Bernhard [5 ,6 ,7 ]
Shariat, Shahrokh F. [7 ,8 ,9 ,10 ,11 ,12 ]
Baltzer, Pascal A. T. [13 ]
Clauser, Paola [13 ]
Hartenbach, Markus [1 ]
Kenner, Lukas [2 ,3 ,14 ,15 ]
Hacker, Marcus [1 ]
Haug, Alexander R. [1 ,2 ]
Rasul, Sazan [1 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Div Nucl Med, Vienna, Austria
[2] Christian Doppler Lab Appl Metabol, Vienna, Austria
[3] Med Univ Vienna, Dept Pathol, Vienna, Austria
[4] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[5] Univ Hosp Krems, Dept Orthoped, A-3500 Krems, Austria
[6] Karl Landsteiner Univ Hlth Sci, Krems, Austria
[7] Med Univ Vienna, Dept Urol, Vienna, Austria
[8] Univ Texas Southwestern Med Ctr, Dept Urol, Dallas, TX USA
[9] Jordan Univ Hosp, Dept Special Surg, Div Urol, Amman, Jordan
[10] Charles Univ Prague, Fac Med 2, Dept Urol, Prague, Czech Republic
[11] Weill Cornell Med Coll, Dept Urol, New York, NY USA
[12] Karl Landsteiner Inst Urol & Androl, Vienna, Austria
[13] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Div Gen & Pediat Radiol, Vienna, Austria
[14] Ctr Biomarker Res Med, Graz, Austria
[15] Univ Vet Med Vienna, Unit Pathol Lab Anim, Vienna, Austria
关键词
Prostate cancer; PSMA; PET/MRI; Machine learning; Extraprostatic extension;
D O I
10.1186/s13244-024-01876-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesRadical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable machine learning (ML).MethodsPatients with newly diagnosed PCa who underwent [68Ga]Ga-PSMA-11 PET/MRI and subsequent RP were recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters, including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic parameters. ML models were subsequently compared with conventional PET/MRI-based image readings.ResultsThe study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95% CI 0.87-0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75-0.97) during independent validation. The ML approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02).ConclusionML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes.Critical relevance statementThis study demonstrates that integrating multimodal data with machine learning significantly improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional imaging methods and potentially leading to more accurate clinical staging and better treatment decisions.Key PointsExtraprostatic extension is an important indicator guiding treatment approaches.Current assessment of extraprostatic extension is difficult and lacks accuracy.Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology.
引用
收藏
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 2009, TNM classification of malignant tumours
[2]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[3]   Prostate cancer: Accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging - Initial results [J].
Bloch, B. Nicolas ;
Furman-Haran, Edna ;
Helbich, Thomas H. ;
Lenkinski, Robert E. ;
Degani, Hadassa ;
Kratzik, Christian ;
Susani, Martin ;
Haitel, Andrea ;
Jaromi, Silvia ;
Ngo, Long ;
Rofsky, Neil M. .
RADIOLOGY, 2007, 245 (01) :176-185
[4]   Impact of prostate imaging quality (PI-QUAL) score on the detection of clinically significant prostate cancer at biopsy [J].
Brembilla, Giorgio ;
Lavalle, Salvatore ;
Parry, Tom ;
Cosenza, Michele ;
Russo, Tommaso ;
Mazzone, Elio ;
Pellegrino, Francesco ;
Stabile, Armando ;
Gandaglia, Giorgio ;
Briganti, Alberto ;
Montorsi, Francesco ;
Esposito, Antonio ;
De Cobelli, Francesco .
EUROPEAN JOURNAL OF RADIOLOGY, 2023, 164
[5]   Considering the role of radical prostatectomy in 21st century prostate cancer care [J].
Costello, Anthony J. .
NATURE REVIEWS UROLOGY, 2020, 17 (03) :177-188
[6]   Machine learning-based analysis of [18F]DCFPyL PET radiomics for risk stratification in primary prostate cancer [J].
Cysouw, Matthijs C. F. ;
Jansen, Bernard H. E. ;
van de Brug, Tim ;
Oprea-Lager, Daniela E. ;
Pfaehler, Elisabeth ;
de Vries, Bart M. ;
van Moorselaar, Reindert J. A. ;
Hoekstra, Otto S. ;
Vis, Andre N. ;
Boellaard, Ronald .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (02) :340-349
[7]   PI-QUAL version 2: an update of a standardised scoring system for the assessment of image quality of prostate MRI [J].
de Rooij, Maarten ;
Allen, Clare ;
Twilt, Jasper J. ;
Thijssen, Linda C. P. ;
Asbach, Patrick ;
Barrett, Tristan ;
Brembilla, Giorgio ;
Emberton, Mark ;
Gupta, Rajan T. ;
Haider, Masoom A. ;
Kasivisvanathan, Veeru ;
Logager, Vibeke ;
Moore, Caroline M. ;
Padhani, Anwar R. ;
Panebianco, Valeria ;
Puech, Philippe ;
Purysko, Andrei S. ;
Renard-Penna, Raphaele ;
Richenberg, Jonathan ;
Salomon, Georg ;
Sanguedolce, Francesco ;
Schoots, Ivo G. ;
Thony, Harriet C. ;
Turkbey, Baris ;
Villeirs, Geert ;
Walz, Jochen ;
Barentsz, Jelle ;
Giganti, Francesco .
EUROPEAN RADIOLOGY, 2024, 34 (11) :7068-7079
[8]   Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis [J].
de Rooij, Maarten ;
Hamoen, Esther H. J. ;
Witjes, J. Alfred ;
Barentsz, Jelle O. ;
Rovers, Maroeska M. .
EUROPEAN UROLOGY, 2016, 70 (02) :233-245
[9]   The Role of Explainability in Assuring Safety of Machine Learning in Healthcare [J].
Jia, Yan ;
McDermid, John ;
Lawton, Tom ;
Habli, Ibrahim .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (04) :1746-1760
[10]   Optimization and validation of 18F-DCFPyL PET radiomics-based machine learning models in intermediate- to high-risk primary prostate cancer [J].
Luining, Wietske I. ;
Oprea-Lager, Daniela E. ;
Vis, Andre N. ;
van Moorselaar, Reindert J. A. ;
Knol, Remco J. J. ;
Wondergem, Maurits ;
Boellaard, Ronald ;
Cysouw, Matthijs C. F. .
PLOS ONE, 2023, 18 (11)