Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing [68Ga]Ga-PSMA-11 PET/MRI

被引:0
|
作者
Spielvogel, Clemens P. [1 ]
Ning, Jing [2 ,3 ]
Kluge, Kilian [1 ,2 ]
Haberl, David [1 ]
Wasinger, Gabriel [3 ]
Yu, Josef [1 ]
Einspieler, Holger [1 ]
Papp, Laszlo [4 ]
Grubmueller, Bernhard [5 ,6 ,7 ]
Shariat, Shahrokh F. [7 ,8 ,9 ,10 ,11 ,12 ]
Baltzer, Pascal A. T. [13 ]
Clauser, Paola [13 ]
Hartenbach, Markus [1 ]
Kenner, Lukas [2 ,3 ,14 ,15 ]
Hacker, Marcus [1 ]
Haug, Alexander R. [1 ,2 ]
Rasul, Sazan [1 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Div Nucl Med, Vienna, Austria
[2] Christian Doppler Lab Appl Metabol, Vienna, Austria
[3] Med Univ Vienna, Dept Pathol, Vienna, Austria
[4] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[5] Univ Hosp Krems, Dept Orthoped, A-3500 Krems, Austria
[6] Karl Landsteiner Univ Hlth Sci, Krems, Austria
[7] Med Univ Vienna, Dept Urol, Vienna, Austria
[8] Univ Texas Southwestern Med Ctr, Dept Urol, Dallas, TX USA
[9] Jordan Univ Hosp, Dept Special Surg, Div Urol, Amman, Jordan
[10] Charles Univ Prague, Fac Med 2, Dept Urol, Prague, Czech Republic
[11] Weill Cornell Med Coll, Dept Urol, New York, NY USA
[12] Karl Landsteiner Inst Urol & Androl, Vienna, Austria
[13] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Div Gen & Pediat Radiol, Vienna, Austria
[14] Ctr Biomarker Res Med, Graz, Austria
[15] Univ Vet Med Vienna, Unit Pathol Lab Anim, Vienna, Austria
来源
INSIGHTS INTO IMAGING | 2024年 / 15卷 / 01期
关键词
Prostate cancer; PSMA; PET/MRI; Machine learning; Extraprostatic extension;
D O I
10.1186/s13244-024-01876-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesRadical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable machine learning (ML).MethodsPatients with newly diagnosed PCa who underwent [68Ga]Ga-PSMA-11 PET/MRI and subsequent RP were recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters, including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic parameters. ML models were subsequently compared with conventional PET/MRI-based image readings.ResultsThe study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95% CI 0.87-0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75-0.97) during independent validation. The ML approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02).ConclusionML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes.Critical relevance statementThis study demonstrates that integrating multimodal data with machine learning significantly improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional imaging methods and potentially leading to more accurate clinical staging and better treatment decisions.Key PointsExtraprostatic extension is an important indicator guiding treatment approaches.Current assessment of extraprostatic extension is difficult and lacks accuracy.Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] [68Ga]Ga-PSMA-11 in prostate cancer: a comprehensive review
    Bois, Frederic
    Noirot, Camille
    Dietemann, Sebastien
    Mainta, Ismini C.
    Zilli, Thomas
    Garibotto, Valentina
    Walter, Martin A.
    AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 10 (06): : 349 - 374
  • [2] Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga]Ga-PSMA-11 PET/MRI
    L. Papp
    C. P. Spielvogel
    B. Grubmüller
    M. Grahovac
    D. Krajnc
    B. Ecsedi
    R. A.M. Sareshgi
    D. Mohamad
    M. Hamboeck
    I. Rausch
    M. Mitterhauser
    W. Wadsak
    A. R. Haug
    L. Kenner
    P. Mazal
    M. Susani
    S. Hartenbach
    P. Baltzer
    T. H. Helbich
    G. Kramer
    S.F. Shariat
    T. Beyer
    M. Hartenbach
    M. Hacker
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 1795 - 1805
  • [3] [68Ga]Ga-PSMA-11: The First FDA-Approved 68Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer
    Hennrich, Ute
    Eder, Matthias
    PHARMACEUTICALS, 2021, 14 (08)
  • [4] Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga]Ga-PSMA-11 PET/MRI
    Papp, L.
    Spielvogel, C. P.
    Grubmueller, B.
    Grahovac, M.
    Krajnc, D.
    Ecsedi, B.
    Sareshgi, R. A. M.
    Mohamad, D.
    Hamboeck, M.
    Rausch, I.
    Mitterhauser, M.
    Wadsak, W.
    Haug, A. R.
    Kenner, L.
    Mazal, P.
    Susani, M.
    Hartenbach, S.
    Baltzer, P.
    Helbich, T. H.
    Kramer, G.
    Shariat, S. F.
    Beyer, T.
    Hartenbach, M.
    Hacker, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (06) : 1795 - 1805
  • [5] A prospective head-to-head comparison of [68Ga]Ga-P16-093 and [68Ga]Ga-PSMA-11 PET/CT in patients with primary prostate cancer
    Guochang Wang
    Linlin Li
    Ming Zhu
    Jie Zang
    Jiarou Wang
    Rongxi Wang
    Weigang Yan
    Lin Zhu
    Hank F. Kung
    Zhaohui Zhu
    European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50 : 3126 - 3136
  • [6] A prospective head-to-head comparison of -[68Ga]Ga-P16-093 and -[68Ga]Ga-PSMA-11 PET/CT in patients with primary prostate cancer
    Wang, Guochang
    Li, Linlin
    Zhu, Ming
    Zang, Jie
    Wang, Jiarou
    Wang, Rongxi
    Yan, Weigang
    Zhu, Lin
    Kung, Hank F.
    Zhu, Zhaohui
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (10) : 3126 - 3136
  • [7] Dynamic patterns of [68Ga]Ga-PSMA-11 uptake in recurrent prostate cancer lesions
    Alberts, Ian
    Sachpekidis, Christos
    Gourni, Eleni
    Boxler, Silvan
    Gross, Tobias
    Thalmann, George
    Rahbar, Kambiz
    Rominger, Axel
    Afshar-Oromieh, Ali
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (01) : 160 - 167
  • [8] Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer
    Ghezzo, Samuele
    Mapelli, Paola
    Bezzi, Carolina
    Samanes Gajate, Ana Maria
    Brembilla, Giorgio
    Gotuzzo, Irene
    Russo, Tommaso
    Preza, Erik
    Cucchiara, Vito
    Ahmed, Naghia
    Neri, Ilaria
    Mongardi, Sofia
    Freschi, Massimo
    Briganti, Alberto
    De Cobelli, Francesco
    Gianolli, Luigi
    Scifo, Paola
    Picchio, Maria
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (08) : 2548 - 2560
  • [9] Diagnostic accuracy of fully hybrid [68Ga]Ga-PSMA-11 PET/MRI and [68Ga]Ga-RM2 PET/MRI in patients with biochemically recurrent prostate cancer: a prospective single-center phase II clinical trial
    Samuele Ghezzo
    Paola Mapelli
    Ana Maria Samanes Gajate
    Anna Palmisano
    Vito Cucchiara
    Giorgio Brembilla
    Carolina Bezzi
    Nazareno Suardi
    Paola Scifo
    Alberto Briganti
    Francesco De Cobelli
    Arturo Chiti
    Antonio Esposito
    Maria Picchio
    European Journal of Nuclear Medicine and Molecular Imaging, 2024, 51 : 907 - 918
  • [10] Systemic therapy response evaluation in prostate carcinoma with [68Ga]Ga-PSMA-11 PET/CT
    Kucuker, Kadir Alper
    Yapar, Zeynep
    Guney, Isa Burak
    Paydas, Semra
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2022, 53 (01)